

Paper Code: MATHDSC 12L

B.Sc. II Semester Degree Examination (NEP), October 2022 Subject : MATHEMATICS

Paper: Algebra - II and Calculus - II (Paper - I)

Time: 2.30 Hours

Max. Marks: 60

Instruction: Answer all the Sections.

SECTION - A

I. Answer any five of the following :

 $(5 \times 2 = 10)$

- 1) Define Least upper bound of the set.
- 2) Find the Supremum and Infimum of $\left\{\frac{4n+3}{n}, \forall n \in N\right\}$.
- 3) Find the number of generators of a cyclic group of order 10.
- 4) Find all the right cosets of $H = \{1, -1\}$ in the multiplicative group $G = \{1, -1, i, -i\}$
- 5) Find the total differential of $u = x^3 + y^3 + x^2y + xy^2$.
- 6) Evaluate $\int_{0}^{1} \int_{0}^{x^{2}} (x^{2} + y^{2}) dy dx$.
- 7) Evaluate $\int_0^1 \int_0^1 \int_0^1 xyz \, dxdydz$.

SECTION - B

II. Answer any four of the following:

 $(4 \times 5 = 20)$

- 8) Show that the set of natural numbers has no limit points.
- State and prove Lagranges theorem for the finite group.
- 10) Prove that a non-empty subset H of a group G is a subgroup of G if and only if ∀a, b ∈ H ⇒ a. b⁻¹∈ H.
- 11) If $u = \log (\tan x + \tan y + \tan z)$. Then show that $\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} + \sin 2z \frac{\partial u}{\partial z} = 2$.
- 12) If $u = e^{\left[\frac{x^2y^2}{x^2 + y^2}\right]}$ then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2u \log u$.
- 13) Evaluate $\int_0^1 \int_0^x \sqrt{x^2 + y^2} dy dx$ by changing into polar Co-ordinates.

P.T.O.

Paper Code: MATHDSC 12L

SECTION - C

III. Answer any three of the following:

 $(3 \times 10 = 30)$

- 14) a) Prove that the intersection of two closed sets is a closed set.
 - b) Define countable set and prove that the set of all integers z is Countable.
- 15) a) Prove that intersection of two sub groups is also a sub group.
 - b) If G is a Cyclic group generated by a, i.e., G = <a> then prove that O(G) = O(a).
- 16) a) If $x = r \cos\theta$ and $y = r \sin\theta$ then prove that $\left(\frac{\partial r}{\partial x}\right)^2 + \left(\frac{\partial r}{\partial y}\right)^2 = 1$.
 - b) Verify Euler's theorem for the function $u = y^3$. $log(x_y)$.
- 17) a) If $u = \sqrt{xy} \ v = \sqrt{yz}$, $w = \sqrt{zx}$ show that $\frac{\partial(u, v, w)}{\partial(x, y, z)} = \frac{1}{4}$.
 - b) Evaluate $\iint_{R} x^2y^2 dxdy$ where R is triangular region with vertices (0, 0), (2, 0) and (2, 3).
- 18) a) By changing the order of integration evaluate $\int_0^{4a} \int_{\frac{3}{4}}^{2\sqrt{ax}} dy dx$.
 - b) Find the volume of the sphere $x^2 + y^2 + z^2 = 4$.

Paper Code: MATHDSC 12L

B.Sc. II Semester Degree Examination (NEP), Oct./Nov. 2023

Subject : MATHEMATICS (Paper - I)
Paper : Algebra - II and Calculus - II

Time: 21/2 Hours

Max. Marks: 60

Instruction: Answer all Sections.

SECTION - A

I. Answer any five of the following :

 $(5 \times 2 = 10)$

- 1) a) Define upper bound.
 - b) Define semi group.
 - c) Define cyclic group.
 - d) Define partial differentiation.
 - e) Define line integral.
 - f) Define homogeneous function.
 - g) State generalized rule of integration by parts.

SECTION - B

II. Answer any four of the following :

 $(4 \times 5 = 20)$

- 2) If $H = \{1, -1\}$ is a subgroup of G. Then $H^{-1} = H$.
- The order of any integral of an element 'a' can not exceed the order of 'a' (i.e. O(a^K) ≤ O(K)).
- 4) If $u = cos^{-1} \left(\frac{y}{x} \right) + tan^{-1} \left(\frac{x}{y} \right)$ show that $xu_x + yu_y = 0$.
- 5) Evaluate $\int_{1}^{2} \int_{0}^{x} \frac{dydx}{y^2 + x^2}$.
- 6) If $u = e^{3x^2 + xy}$, find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.
- 7) Evaluate $\int_C (2y + x^2) dx + (3x y) dy$ along the curve x = 2t, $y = t^2 + 3$ where 0 < t < 1.

P.T.O.

Paper Code: MATHDSC 12L

SECTION - C

III. Answer any three of the following:

 $(3 \times 10 = 30)$

- 8) a) Find all the cosets of the subgroup H(0, 3) in the group $(Z_6, +_6)$.
 - b) Find the order of the cyclic group G of order $(Z_{12}, +_{12})$ generated by 3.
- 9) a) If $z = e^{ax + by} \sin(ax by)$, show that $b \frac{\partial z}{\partial x} + a \frac{\partial z}{\partial y} = 2abz$.
 - b) If $u = x^3 + y^3 + z^3 3xyz$, show that $xu_x + yu_y + zu_z = 3u$.
- 10) a) Find the total differential of the following $u = xy^2 + yz^2 + zx^2$.
 - b) Find the total derivative of the function $u = xy^2 + x^2y$ where x = 2at, y = at.
- 11) a) Define Jacobian if u = x + y, $v = \frac{1}{x + y}$. Show that $\frac{\partial (u, v)}{\partial (x, y)} = 0$.
 - b) Evaluate $\int_C (xydx + yzdy + zxdz)$ where C is the curve given by x = t, $y = t^2$, $z = t^3$ and t is varying from -1 to 1.
- 12) a) Evaluate $\iint_{0}^{z} \iint_{1}^{z} \left(\frac{x}{y} + \frac{y}{z} + \frac{z}{x} \right) dxdydz.$
 - b) Find the volume of the region above the xy-plane bounded by the paraboloid $z = x^2 + y^2$ and the cylinder $x^2 + y^2 = 1$.