B.Sc. III Semester Degree Examination (NEP), April 2023

Subject : MATHEMATICS (Paper - I)

Paper: DSC - I: Ordinary Differential Equations and Real Analysis - I

Time: 2 Hours

Max. Marks: 60

Instruction: Answer all the Sections.

SECTION - A

Answer any five of the following:

 $(5 \times 2 = 10)$

- 1. a) Solve $P^2 + P 6 = 0$.
 - b) Define orthogonal trajectory.
 - c) Solve $[D^2 6D + 9] y = 0$.
 - d) Define Cauchy's Euler equation.
 - e) Define a sequence.
 - f) State the comparison test.
 - g) Test the convergence of the series

$$1 + \frac{5}{1!} + \frac{5^2}{2!} + \frac{5^3}{3!} + \dots$$

SECTION - B

Answer any four of the following:

 $(4 \times 5 = 20)$

- 2. Find the general and singular solution of $y = px + 1 p^2$.
- 3. Solve $[D^2 5D + 6]$ y = sin3x.
- Solve by variation of parameter y₂ + y = secx.
- 5. Show that the sequence $\left\{\frac{n}{n^2+1}\right\}$ is bounded.

P.T.O.

Paper Code: MATDSC 13L

6. Test the convergence of the series

$$\frac{1}{1.3.5} + \frac{2}{3.5.7} + \frac{3}{5.7.9} + \dots$$

7. Find the nature of the series

$$x + \frac{1.2}{1.3} \, x^2 + \frac{1.2.3}{1.3.5} \, x^3 + \ldots , \quad (x > 0).$$

SECTION - C

Answer any three of the following:

 $(3 \times 10 = 30)$

- 8. a) Solve $[x^2D^2 + xD 4]y = x^2$.
 - b) Verify the condition of the integrability and solve (y + z) dx + dy + dz = 0.
- 9. a) Solve $\frac{dx}{1} = \frac{dy}{-2} = \frac{dz}{3x^2 \sin(y + x)}$.

6

6

- b) Solve y = 3x + logP.
- 10. a) Solve $(xy^2 + 2x^2y^3) dx + (x^2y x^3y^2) dy = 0$.
 - b) Find the orthogonal trajectory of $xy = a^2$.

4

6

4

6

- a) Show that every monotonically increasing sequence which is bounded above converges to its least upper bound.
 - b) Test the convergence of the series

$$1 + \frac{2^2}{2!} + \frac{3^2}{3!} + \frac{4^2}{4!} + \dots$$

- 12. a) If a sequence $\{x_n\}$ converges to the limits l>0 then show that $\exists m\in N$ such that $x_n>0 \ \forall \ n\geq m$.
 - b) Find the nature of the series $\sum_{n=1}^{\infty} \left(1 + \frac{2}{n}\right)^{n^2}$.

B.Sc. III Semester Degree Examination (NEP), March/April 2024

Subject : MATHEMATICS Paper - I

Paper: Ordinary Differential Equations and Real Analysis - I

Time: 21/2 Hours

Max. Marks: 60

Instruction: Answer all Sections.

SECTION - A

I. 1) Answer any five of the following.

 $(5 \times 2 = 10)$

a) Solve
$$p^2 + 2px - 3x^2 = 0$$
.

15) Solve
$$[D^2 - 7D + 12]y = 0$$
.

- c) Define complementary function and particular integral.
- d) Define convergent sequence with an example.
- Show that sequence $\{x_n\}$ where $x_n = 3 + \frac{1}{n}$ is monotonic.
- f) State the Raabe's test.
- g) Find the nature of $\sum_{n=1}^{\infty} \left(1 + \frac{2}{n}\right)^{n^2}$.

SECTION - B

II. Answer any four of the following.

 $(4 \times 5 = 20)$

2) Solve,
$$y = 2px + y^2p^3$$
.

- 3) Find the general and singular solution of the equation $y = px + p^2$.
- 4) Verify the condition of integrability and solve (y + z)dx + dy + dz = 0.
- 5) Show that "Every convergent sequence has a unique limit".
- 6) Using Cauchy's criterion of convergence, show that the sequence $\{x_n\}$ where $x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ is not convergent.

7) Find the nature of the series,

$$\frac{1}{1\cdot 2\cdot 3} + \frac{3}{2\cdot 3\cdot 4} + \frac{5}{3\cdot 4\cdot 5}$$

P.T.O.

SECTION - C

III. Answer any three of the following.

 $(3 \times 10 = 30)$

8) a) Solve
$$(2x^2y+y^2)dx + (2x^3 - xy)dy = 0$$
.

6

b) Solve
$$\frac{dx}{z^2y} = \frac{dy}{z^2x} = \frac{dz}{xy^2}$$
.

4

9) a) Solve,
$$\frac{dx}{\cos(x+y)} = \frac{dy}{\sin(x+y)} = \frac{dz}{z}$$
.

6

4

10) a) Solve by Clairaut's form

$$y^2 - 2pxy + p^2(x^2 - 1) = m^2$$

6

b) Solve,
$$\frac{dx}{mz-ny} = \frac{dy}{nx-lz} = \frac{dz}{ly-mx}$$
.

6

 a) Prove that "Every monotonically decreasing sequence which is bounded below converges to its greatest lower bound".

b) Discuss the convergence of the series.

4

$$\sum_{n=1}^{\infty}\!\!\left[\!\left(\frac{n+1}{n}\right)\!-\!\left(\frac{n+1}{n}\right)^{\!n+1}\right]^{\!-n},$$

12) a) Test the series $1 - \frac{1}{4} + \frac{1}{7} - \frac{1}{10} + \dots$ for

6

- i) Convergence
- ii) Absolute convergence
- iii) Conditional convergence.
- b) Show that the sequence $\left\{\frac{n}{n^2+1}\right\}$ is bounded.

,