

Curriculum Framework for Four-Year Undergraduate Multidisciplinary Programme (Honours) & Master Programme in Colleges and Universities of Karnataka State Under NEP 2020.

3rd and 4th Semester Model Syllabus ForUG Program in Microbiology

Submitted to Vice Chairman Karnataka State Higher Education Council

Submitted by

Prof. DAYANAND AGSAR Vice Chancellor, Gulbarga University CHAIRMAN and MEMBERS SUBJECTWISE EXPERT COMMITTEE In Microbiology and Biotechnology

PREAMBLE

The role of education is paramount in nation building. One of the major objectives of UGC is maintenance of standards of higher education. Over the past decades the higher education system of our country has undergone substantial structural and functional changes resulting in both quantitative and qualitative development of the beneficiaries. Such changes have gained momentum with the introduction of Choice Based Credit System (CBCS) which further expects Learning Outcome-Based curriculum to maximize the benefits of the newly designed curriculum. The Learning Outcome- Based Curriculum in Microbiologywill help the teachers of the discipline to visualize the curriculum more specifically in terms of the learning outcomes expected from the students at the end of the instructional process. The commission strives to promote the link of students with the society/industry such that majority of the students engage in socially productive activities during their period of study in the institutions and at least half of the graduate students will secure access to employment/self-employment or engage themselves in pursuit of higher education. The model curriculum envisages to cater to the developmental trends in higher education, incorporating multi- disciplinary skills, professional and soft skills such as teamwork, communication skills, leadership skills, time management skills and inculcate human values, professional ethics, and the spirit of Innovation / entrepreneurship and critical thinking among students and promote avenues for display of these talents, linking general studies with professional courses. Besides imparting disciplinary knowledge to the learners, curriculum should aim to equip the students with competencies like problem solving, analytical reasoning and moral and ethical awareness. Introduction of internship and appropriate fieldwork/case studies are embedded in the curriculum for providing wider exposure to the students and enhancing their employability.

Learning outcomes specify what exactly the graduates are expected to know after completing a Programme of study. The expected learning outcomes are used as reference points to help formulate graduate attributes, qualification descriptors, Programme learning outcomes and course learning outcomes. Keeping the above objectives of higher education in mind the Learning Outcome-Based Curriculum Framework (LOCF) for the discipline of Microbiology has been prepared and presented here.

Model Curriculum

Program Name	B.Sc. Discipline	Total Credits for the Program	176
Core	Microbiology	Starting year of implementation	2021-22

Program Outcomes: At the end of the program the student should be able to:

(Refer to literature on outcome-based education (OBE) for details on Program Outcomes)

- PO1. Knowledge and understanding of concepts of microbiology and its application inpharma, food, agriculture, beverages, nutraceutical industries.
- PO2. Understand the distribution, morphology and physiology of microorganisms and demonstrate the skills in aseptic handling of microbes including isolation, identification and maintenance
- PO3. Competent to apply the knowledge gained for conserving the environment andresolving the environmental related issues.
- PO4. Learning and practicing professional skills in handling microbes and contaminantsin laboratories and production sectors.
- PO5. Exploring the microbial world and analysing the specific benefits and challenges.
- PO6. Applying the knowledge acquired to undertake studies and identify specificremedial measures for the challenges in health, agriculture, and food sectors.
- PO7. Thorough knowledge and application of good laboratory and good manufacturingpractices in microbial quality control.
- PO8. Understanding biochemical and physiological aspects of microbes and developingbroader perspective to identify innovative solutions for present and futurechallenges posed by microbes.
- PO9. Understanding and application of microbial principles in forensic and workingknowledge about clinical microbiology.
- PO10. Demonstrate the ability to identify ethical issues related to recombinant DNAtechnology, GMOs, intellectual property rights, biosafety and biohazards.
- PO11. Demonstrate the ability to identify key questions in microbiological research,optimize research methods, and analyse outcomes by adopting scientificmethods, thereby improving the employability.

PO12. Enhance and demonstrate analytical skills and apply basic computational and statistical techniques in the field of microbiology.

Assessment:

Weightage for assessments (in percentage)

Type of Course	Formative Assessment / IA	Summative Assessment
Theory	40	60
Practical	25	25
Projects	-	-
Experiential Learning (Internships etc.)	-	-

Contents of Courses for B.Sc. Microbiology as Major

Model II A

er		e ry	Pr l	S		Mar	ks
Semester	Course code	Course Category	Theory/Pr actical	Credits	Paper Title	S.A	I.A
	MBL-103	DSC- 7	Theory	4	Microbial Diversity	60	40
3.	1012 103		Practical	2	Microbial Diversity	25	25
		OE- 3	Theory	3	Microbial Entrepreneurship	60	40
	MBL-104	DSC- 8	Theory	3	Microbial Enzymology and Metabolism	25	25
4.			Practical	2	Microbial Enzymology and Metabolism	60	40
		OE- 4	Theory	3	Human Microbiome	25	25

Model Curriculum

Program Name	BSc Microbiology		Semester	Third Sem
Course Title	Microbial Diversity			
Course No.	MBL-103	DCS -3T	No. of Theory Credits	4
Contact hours	56hrs		Duration of ESA/Exam	Hours
Formative Asses	sment Marks		Summative Assessment Ma	urks

Course Pre-requisite (s):.

Course Outcomes (COs): At the end of the course the student should be able to:

- 1. Knowledge about microbes and their diversity
- 2. Study, characters, classification and economic importance of Pro-eukaryotic and Eukaryotic microbes.
- 3. Knowledge about viruses and their diversity

Content	Hrs
Unit–I	06 Hrs
Biodiversity and Microbial Diversity	
Concept, definition, and levels of biodiversity; Biosystematics – Major classification systems- Numerical and Chemotaxonomy. Study and measures of microbial diversity; Conservation and Economic values of microbial diversity.	
Unit -II	
Diversity of Prokaryotic Microorganisms	
General characters; Classification; Economic importance; Distribution and factors regulating	
distribution.	
Bacteria and Archaea- An overview of Bergey's Manual of Systematic Bacteriology. Bacteria -	
Escherichia coli, Bacillus subtilis, Staphylococcus aureus	
Cyanobacteria- Nostoc, Microcystis, Spirulina ArcheaThermusaquaticus, Methanogens	
Actinomycetes: Streptomyces, Nocordia, Frankia	
Rickettsiae- Rickettsia rickettsi	
Chlamydiae – Chlamydia trachomatis	
Spirochaetes- Trepanemapallidum	
Unit -III	
Diversity of Eukaryotic Microorganism	
Diversity of Eukaryotic Microorganism: General characters; Classification- Economic	
importance	
Fungi: Ainsworth classification- detailed study up to the level of classes, Salient features and	
reproduction. Type study: Rhizopus, Saccharomyces, Aspergillus, Agaricus, Fusarium	

Algae: Occurrence, distribution, and symbiotic association- Lichen; thallus organization and	
types. Type study: Chlorella, Cosmarium, Diatoms, Gracilaraia,	
Protozoa: Classification up to the level of classes. Type study: Amoeba, Euglena, Trichomonas,	
Paramoecium, Trypanosoma	
Unit -IV	
Diversity of Virus	
General properties and structure, Isolation and purification and assay of virus. Principles of Viral	
Taxonomy- Baltimore and ICTV and the recent trends.	
Capsid symmetry- Icosahedral, helical, complex	
Animal: HIV, Corona, Ortho and paramyxovirus, Oncogenic virus	
Plants: TMV, Ring spot virus	
Microbial: T4/T7/lambda/cyano/mycophages. Sub viral particles.	
Virans and Prions. Ortho and Paramyxo Virus. Oncogenic Virus.	

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

Course Outcomes (COs) / Program Outcomes (POs)]	Progr	am (Out	com	es (I	POs))		
		2	3	4	5	6	7	8	9	10	11	12
Knowledge about microbes and their diversity		~			~			~				
Study, characters, classification and economic importance of Pro-eukaryotic and Eukaryotic microbes		~	~		~							
Knowledge about viruses and their diversity		~				✓				✓		

Pedagogy: Lectures, Seminars, Industry Visits, Debates, Quiz and Assignments

Summative Assessment = 60 Marks	
Formative Assessment Occasion / type	Weightage in Marks
Attendance	10
Seminar	10
Debates and Quiz	10
Test	10
Total	60 marks + 40 marks = 100 marks

Course	Title	Microbial Diversity		Practical Credits	2
Course	No.	MBL-103	DSC-4P	Contact hours	
			Content		
1.	Study of a	morphology of bacteria			
2.	Isolation	of bacteria from soil			
3.	Isolation	of bacteria from air and	water		
4.	Isolation	of fungi from soil			
5.	Isolation	of fungi from air and w	ater		
6.	Cultivatio	on of Cyanobacteria			
7.	Cultivatio	on of actinomycetes			
8.	Measuren	nent of microbial cell si	ze by Micrometry		
9.	Cyanobacteria Nostoc, MicrocyctisSpirulina				
10.	Study of A	Algae Chlorella Diatom	is, Gracilaria		
11.	Study of Fungi Rhizopus Saccharomyces Agaricus				
12.	Study of Protozoa Amoeba Paramoecium Euglena				
13.	Study of Photographs or Models				
14.	HIV, TMV, Corona virus T4Phage				
15.	Paramyxo	ovirus Oncogenic viruse	es		

Practical assessment

	Assessment	-		
Formative asso	essment	Summative Assessment		
Assessment Occasion / type	Weightage in Marks	Practical Exam	Total Marks	
Record	5			
Test	10			
Attendance	5	25	50	
Performance	5			
Total	25	25		

Ref	cerences
1	Black, J.G. 2002. Microbiology-Principles and Explorations. John Wiley and Sons, Inc. New York
2	Brock, T.D. and Madigan, M.T. 1988. Biology of Microorganisms, V Edition. Prentice Hall. New Jersey
3	Dimmock, N. J., Easton, A. J., and Leppard, K. N. 2001. Introduction to Modern Virology. 5 th edn. Blackwell publishing, USA
4	Flint, S.J., Enquist, L.W., Drug, R.M., Racaniello, V.R. and Skalka, A.M. 2000. Principles of Virology- Molecular Biology, Pathogenesis and Control. ASM Press, Washington, D.C
5	Prescott, Harley, Klein's Microbiology, J.M. Willey, L.M. Sherwood, C.J. Woolverton, 7th International, edition 2008, McGraw Hill
6	Vashishta B.R, Sinha A.K and Singh V. P. Botany – Fungi 2005, S. Chand and Company Limited, New Delhi
7	Kotpal R.L Protozoa 5 th Edition 2008, Rastogi Publications, Meerut, New Delhi.
8	Brock Biology of Microorganisms, M.T. Madigan, J.M. Martinko, P. V. Dunlap, D. P. Clark- 12th edition, Pearson International edition 2009, Pearson Benjamin Cummings

Ref	ierences
9	Microbiology – An Introduction, G. J. Tortora, B. R. Funke, C. L. Case, 10th ed. 2008, Pearson Education
10	General Microbiology, Stanier, Ingraham et al, 4th and 5th edition 1987, Macmillan education limited
11	Microbiology- Concepts and Applications, Pelczar Jr. Chan, Krieg, International ed, McGraw Hill
12	Alexopoulos, C.J., Mims, C.W., and Blackwell, M. 2002. Introductory Mycology. John Wiley and Sons (Asia) Pvt. Ltd. Singapore. 869 pp
13	Vashishta, B.R Sinha A.K and Singh V. P. Botany - Algae 2005 S. Chand and Company Limited, New Delhi
14	A Textbook of Microbiology, R. C. Dubey, and D. K. Maheshwari, 1st edition, 1999, S. Chand & Company Ltd, New Delhi
15	Foundations in Microbiology, K. P. Talaro, 7th International edition 2009, McGraw Hill

Date:

Subject Committee Chairperson

Model Curriculum

Program Name	BSc Microbiolo	gy	Semester	Third Sem			
Course Title Microbial Entrepreneurship							
Course Code	OE-3 No. of Theory Credits 3						
Contact hours	Contact hours Lecture Duration of ESA/Exam H						
Practical							
Formative Assessment Marks40Summative Assessment Marks							
1. Demonstrate			should be able to:				
		thcare Entrepreneurship					
		CONTENT		42 HRS			
Unit–I							
General Entrep	reneurship						
development, p	roduct marketing	1 1	duction and scope, Busine Bioethics, IPR and patentin and challenges.				
		UNIT -II		14 HR			
Industrial Entro	epreneurship						
Bakery and Conf	fectionery, Alcoho		Dairy products, Fermented food Enzymes – Industrial production from and Spirulina) etc.				
Unit -III -				14 Hrs			
Healthcare Entr	repreneurship						
		anitizers, Antiseptic soluti s and Bioplastics, vaccines, I	ions, Polyhenols (Flavonoids) Diagnostic tools and kits.	3),			

Pedagogy: Lectures, Seminars, Industry Visits, Debates, Quiz and Assignments

Summative Assessment = 60 Marks						
Formative Assessment Occasion / type	Weightage in Marks					
Attendance	10					
Seminar	10					
Debates and Quiz	10					
Test	10					
Total	60 marks + 40 marks = 100 marks					

Ref	References						
1	Srilakshmi B, (2007), Dietetics. New Age International publishers. New Delhi						
2	Srilakshmi B, (2002), Nutrition Science. New Age International publishers. New Delhi						
3	Swaminathan M. (2002), Advanced text book on food and Nutrition. Volume I. Bappco						
4	Gopalan.C.,RamaSastry B.V., and S.C.Balasubramanian (2009), Nutritive value of Indian Foods.NIN.ICMR.Hyderabad.						
5	Mudambi S R and Rajagopal M V, (2008), Fundamentals of Foods, Nutrition & diet therapy by New Age International Publishers, New Delhi						

Date:

Subject Committee Chairperson

Model Curriculum

Program Name	BSc Microbiology			Semester	Four	th Sem		
Course Title	Microbial Er	Microbial Enzymology and Metabolism						
Course No.	MBL:104 DCS -4T		DCS -4T	No. of Theory Credits	4			
Contact hours	tet hours 56 hrs Duration of ESA/Exam			2 ½ l	Hours			
Formative Assessment Marks 40				Summative Assessment Ma	urks	60		

Course Pre-requisite (s):.

Course Outcomes (COs): At the end of the course the student should be able to:

- 1. Differentiating concepts of chemoheterotrophic metabolim and chemolithotrophic metabolism.
- 2. Describing the enzyme kinetics, enzyme activity and regulation.
- 3. Differentiating concepts of aerobic and anaerobic respiration and how these are manifested in the form of different metabolic pathways in microorganisms

Content					
Unit–I	14 Hrs				
Metabolism of Carbohydrates					
Chemoheterotrophic Metabolism- Anaerobic respiration and fermentation					
Concept of aerobic respiration, anaerobic respiration and fermentation. Sugar degradation					
pathways i.e. EMP, ED, Pentose phosphate pathway, Phosphoketolase pathway. TCA cycle.					
Fermentation - Fermentation balance, concept of linear and branched fermentation pathways.					
Fermentation pathways: Alcohol fermentation and Pasteur effect; Butyric acid and Butanol-					
Acetone Fermentation, Mixed acid and 2,3-butanediol fermentation, Propionic acid Fermentation					
(Succinate pathway and Acrylate pathway), acetate Fermentation					
Chemolithotrophic Metabolism:Chemolithotrophy - Hydrogen oxidation, Sulphur oxidation, Iron					
oxidation, Nitrogen oxidation.					
Anaerobic respiration with special reference to disimilatory nitrate reduction and sulphate					
reduction.					

Unit -II	14 Hrs
. Metabolism of aminoacids, nucleotides and lipids	
1.Nitrogen Metabolism	
Introduction to biological nitrogen fixation Ammonia assimilation. Assimilatory nitrate reduction,	
dissimilatory nitrate reduction, denitrification	
2. Biosynthesis of ribonucleotides and deoxyribonucleotides	
The de novo pathway. Regulation by feedback mechanisms. Recycling via the salvage pathway	
3. Amino acid degradation and biosynthesis	
4. Lipid degradation and biosynthesis	
5.Metabolism of one carbon compounds: Methylotrophs : i. Oxidation of methane, methanol,	
methylamines; ii. Carbon assimilation in methylotrophic bacteria and yeasts Methanogens: i.	
Methanogenesis from H ₂ , CO ₂ , CHOH, HCOOH, methylamines; ii. Energy coupling and	
biosynthesis in methanogenic bacteria	
Acetogens: Autotrophic pathway of acetate synthesis	
6. Metabolism of two-carbon compounds: Acetate: i. Glyoxylate cycle. Acetic acid bacteria:	
Ethanol oxidation, sugar alcohol oxidation. Glyoxylate and glycolate metabolism:i. Dicarboxylic	
acid cycle, ii. Glycerate pathway iii. Beta hydroxyaspartate pathway	
Oxalate as carbon and energy source	
Unit -III	14 Hrs
Basics of Enzymes	
Definitions of terms – enzyme unit, specific activity and turnover number, exo/ endoenzymes,	
constitutive/ induced enzymes, isozymes. Monomeric, Oligomeric and Multimeric enzymes.	
Multienzyme complex: pyruvate dehydrogenase; isozyme: lactate dehydrogenase. Ribozymes,	
abzymes	
Structure of enzyme: Apoenzyme and cofactors, prosthetic group-TPP, coenzyme, NAD, metal	
cofactors.	
Classification of enzymes, Mechanism of action of enzymes: active site, transition state complex	
and activation energy. Lock and key hypothesis and Induced Fit hypothesis. Multisubstrate	
reactions -Ordered, Random, Ping-pong.	
Enzyme catalysis: Catalytic mechanisms with type examples, catalytic mechanisms and testing -	
Serine proteases and Lysozyme	

Unit -IV14 HrsEnzyme Kinetics and RegulationIf a sumptions ii. Steady stateEnzyme Kinetics: Kinetics of one substrate reactions. i. Equilibrium assumptions ii. Steady stateassumptions iii. Lineweaver-Burk, Hanes-Woolf, Eadie-Hofstee equations and plots.Kinetics ofenzyme inhibition. Competitive, non-competitive and uncompetitive inhibition.Effect of changesin pH and temperature on enzyme catalysed reaction.Kinetics of two substrate reactions. Presteady state kinetics. Kinetics of immobilized enzymesEnzyme regulation:Allosteric enzyme - general properties, Hill equation, KoshlandNemethy andFilmer model, Monod Wyman and Changeux model. Covalent modification by variousmechanisms. Regulation by proteolytic cleavage - blood coagulation cascade. Regulation of multi-enzyme complex- Pyruvate dehydrogenase. Feedback inhibition.HIV enzyme inhibitors and drugdesign

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

		Program Outcomes (POs)										
Course Outcomes (COs) / Program Outcomes (POs)			3	4	5	6	7	8	9	10	11	12
Differentiating concepts of chemoheterotrophic metabolim and chemolithotrophic metabolism		~						~			~	
Describing the enzyme kinetics, enzyme activity and regulation.		~						~			~	
Differentiating concepts of aerobic and anaerobic respiration and how these are manifested in the form of different metabolic pathways in microorganisms		~						~			~	

Pedagogy: Lectures, Seminars, Industry Visits, Debates, Quiz and Assignments

Summative Assessment = 60 Marks					
Formative Assessment Occasion / type	Weightage in Marks				
Attendance	10				
Seminar	10				
Debates and Quiz	10				
Test	10				
Total	60 marks + 40 marks = 100 marks				

Cours	se Title	Microbial Enzymolo	gy and Metabolism	Practical Credits	2				
Cours	se No.	MBL:104	DSC-4P	Contact hours					
	Content								
1. H	1. Handling of micropipettes and checking their accuracy								
2. Is	2. Isolation of cholesterol and lecithin from egg yolk								
3. Io	dentification	n of fatty acids and othe	er lipids by TLC/GC						
4. C	Determinatio	on of degree of unsatura	ation of fats and oils						
5. Is	solation of l	lactose from bovine mil	k						
6. E	Estimation o	of total sugars by the ph	enol-sulphuric acid me	thod					
7. E	Estimation o	of DNA - DPA method	& UV absorbance meth	nod					
8. E	Estimation o	of RNA (Orcinol metho	d)						
9. Is	solation of g	glutamic acid from glut	en						
10. E	Determinatio	on of molar absorption	coefficient (ε) of l-tyro	sine					
11. E	Determinatio	on of the isoelectric poi	nt of the given protein						
12. E	Estimation o	of polyphenols/ tannins	by Folin- Denis metho	d					
13. C	Chemotaxis	of Pseudomonas							
14. D	14. Demonstration of alcoholic fermentation								
E		riables on enzyme acti centration e. Determina							

Practical assessment

Assessment					
Formative assessment		Summative Assessment	Tradal Marilan		
Assessment Occasion / type	Weightage in Marks	Practical Exam	Total Marks		
Record	5				
Test	10				
Attendance	5	5 25			
Performance	5				
Total	25	25			

Ref	References								
1	Philipp. G. Mannual of Methods for General Bacteriology.								
2	2 David T. Plummer. An Introduction to Practical Biochemistry								
3	Biochemistry- A Problem Approach, Wood W. B. Wilson J.H., Benbow R.M. and Hood L.E.2nd ed.,								
	1981, The Benjamin/ Cummings Pub.co								
4	Biochemical calculations, Segel I.R., 2nd ed., 2004, John Wiley and Sons								
5	Biochemical Calculations, Irwin H. Segel, 2nd Edition John Wiley & Sons								

Model Curriculum

Program Name	BSc Microbiol	ogy	Semester	Fourth Sem				
Course Title	Human Microbiome							
Course Code	OE-4T No. of Theory Credits							
Contact hours	Lecture		Duration of ESA/Exam	Hours				
Practical								
Formative Assessment Marks40Summative Assessment Marks60								

Course Pre-requisite(s):

Course Outcomes (COs): At the end of the course the student should be able to:

- 1. Articulate a deeper understanding on biological complexities of human micro biome.
- 2. Understand broader goals of biological anthropology.
- 3. Compare and contrast the microbiome of different human body sites and impact human health promotion

	1
Content	45 Hrs
Unit–I	14 Hrs
INTRODUCTION TO MICROBIOME	
Evolution of microbial life on Earth, Symbiosis host-bacteria . Microbial association with plants	
and animals, Symbiotic and parasitic, Normal human microbiota and their role in heatlh.	
Microbiomes other than digestive system.	
Unit -II	14 Hrs
MICROBIOMES AND HUMAN HEALTH	
Microbiome in early life, Nutritonal modulation of the gut microbiome for metabolic health- role	
of gut mocrobiomes in human obesity, human type 2 diabetes and longevity.	
Probiotics-Criteria for probiotics, Development of Probiotics for animal and human use; Pre and	
synbiotics. Functional foods-health claims and benefits, Development of unctional foods.	

Unit -III	14 Hrs
CULTURING OF MICROBES FROM MICROBIOMES	
Culturing organisms of interest from the microbiome : bacterial, archaeal, fungal, and yeast, viral.	
Extracting whole genomes from the microbiome to study microbiome diversity	
Microbiomes and diseases: Microbiome and disease risks: The gut microbiome and host	
immunity, bacteriocins and other antibacterials. Human microbiome research in nutrition	

Pedagogy

Summative assessment = 40 marks theory paper, End semester Exam duration of exam 2 hours		
Formative Assessment Occasion / type	Weightage in Marks	
Assignment	10	
Seminar	10	
Case studies	10	
Test	10	
Total	40 marks	

References		
1		
2		
3		
4		
5		

Date:

Subject Committee Chairperson