

Model Physics Syllabus

Multi-Disciplinary Programme as per NEP-2020

B.Sc., / M.Sc., (Physics) Syllabus

SEPTEMBER 1, 2021

Karnataka State Higher Education Council, Bengaluru

Model Physics Syllabus Multi-Disciplinary Programme as per NEP-2020

Expert Committee Members:

Prof. S.M. Shivaprasad (Chairman)	Director, KS-Higher Education Academy, Dharwad
Prof. M. A. Sridhar	University of Mysore, Mysuru
Prof. S. R. Inamdar	Karnatak University, Dharwad.
Prof. Ramakrishna Damle	Bangalore University, Bengaluru.
Prof. Dharmaprakash S.M.	Mangalore University, Konaje
Prof. T. Sankarappa	Gulbarga University, Kalaburgi
Prof. Jayanna H.S	Kuvempu University, Shivamogga
Prof. Nagabhushana H.	Tumkur University, Tumakuru.
Prof. Thipperudrappa J.	VSK University, Ballari
Prof. B. G. Hegde,	Rani Channamma University, Belagavi.
Dr. Sreepad H.R.	Mandya University, Mandya
Shri Rohini Kumar Hilli,	MSI Degree College, Kalaburgi
Dr. M. Narayana Bhat	St. Aloysius College, Mangalore.
Shri L. S. Ramesh,	Karnataka State Higher Education Council

BOS Members as invitees

Dr. M.N. Kalasad,	Davangere University, Davangere
Prof. Narayan,	Mangalore University, Mangaluru
Dr. L.R. Naik,	Karnatak University, Dharwad.

Expert Committee (Physics) Meetings held on:

- August 20, Friday (Virtual)
- August 25, Wednesday (Virtual)
- August 29, Sunday at Higher Education Academy (Physical)
- September 3, Friday (Virtual)
- September 5, Sunday, (Virtual)
- September 15, Wednesday, (Virtual)

Contents

Sl. No.	Section	
		No
1.	Introduction & Recommendations	4
2.	Programme Educational Objectives	7
3.	Proposed Curriculum	10
4.	Detailed Syllabus for I & II Semesters	14
5.	Syllabus for III & IV Semesters	26
6.	Syllabus for Open Electives (I-IV) Sem	35
7.	Activity Based Pedagogy: Examples	56

Introduction:

The New Education Policy (2020) is a paradigm shift from the conventional system we practice even today. Giving students the entire freedom to choose what to learn, how to learn, where to learn and when to learn, will enable a personalized education that suits his/her own personality. The drive to change the pedagogy in the curriculum and syllabi will cater to the cognitive, affective and psychomotor domain of learning, which will fruitfully engage to student and guide him to ascend the Blooms levels of learning hierarchy, elevating them from just remembering to become creative through acquiring skills of application, evaluation and analysis. Such an approach will enable the institution and the individual to design and execute education that is suitable and doable. The wonderful Academic Credit accumulation and the multiple exit/entry options enable multi-displinarity obtainable from multiple institutions, and even from recognized digital platforms. This will create unprecedented opportunities to the students to self-evaluate and change course at every stage of education as they learn. Introducing the possibility of cutting across disciplines to pursue one's interest and talent can boost curricular and extra-curricular activities by an equal measure. This will definitely enable the blooming of creativity among individuals who will not only be excellent and productive employees, but also assume the mantle of becoming entrepreneurs and job providers. The opportunity for the teacher to adopt novel pedagogies will make classrooms vibrant, meaningful and effective. The student choices will also lead to a healthy cross-disciplinary interaction between institutions and consequently enhancing their capabilities and credibility.

The NEP-2020 is based on Outcome Based Education, where the Graduate Attributes and employment opportunities are first kept in mind to reverse-design the Programs, Courses and Supplementary activities to attain the graduate attributes and learning outcomes.

- Attribute 1: Deep discipline knowledge and intellectual breadth. ...
- Attribute 2: Creative and critical thinking, and problem solving. ...
- Attribute 3: Teamwork and communication skills. ...
- Attribute 4: Professionalism and leadership readiness. ...
- Attribute 5: Intercultural and ethical competency.

The learning outcomes-based curriculum framework for a degree in B.Sc. (Honours) Physics is intended to provide a comprehensive foundation to the subject and to help students develop the ability to successfully continue with further studies and research in the subject while they are equipped with required skills at various stages. The framework is designed to equip students with valuable cognitive abilities and skills so that they are successful in meeting diverse needs of professional careers in a developing and knowledge-based society. The curriculum framework takes into account the need to maintain globally competitive standards of achievement in terms of the knowledge and skills in Physics, as well develop scientific orientation, spirit of enquiry problem solving skills and human and professional will values which foster rational and critical thinking in the students.

It is imperative that in the spirit of the NEP, several academic matters have to change. The most important among these will be the pedagogy that will be adopted in the Teaching-Learning experience to enrol, engage and involve and inspire the students. The learning that happens by employing different types of pedagogies is shown below, and thus need to be adopted in the teaching-learning process for effective cognition by the students using the Auditory, Visual and Kinaesthetic approaches:

Along with conventional teaching methods, Activity based pedagogies are seen to be extremely effective in achieving the Program Educational Objectives. The Committee has attempted to consider both the spirit of the NEP and the existing system and framed the syllabus within the Curriculum options offered by the Higher Education Council. The broad topic level syllabus for all the 5 years (10 semesters) for an integrated B.Sc + M.Sc program has been provided. However, a detailed syllabus has to been provided for the First Two Semester. Attempts have been made to sincerely bring in Activity based pedagogy. The activities have been listed and a few examples have been provided to guide the teacher of how to create their own activities that engage and illuminate students by group and self-involvement methods and a possible evaluation method.

The Committee felt that a more comprehensive curriculum, syllabus and details have to be evolved with time and also the necessary academic resources and infrastructure have to be provided to implement the NEP-2020 effectively to attain the aspirations of the policy. The Committee also makes the following recommendations specifically for the Physics syllabus, that can be appropriately considered:

Recommendations:

Since studying Physics well (choosing Physics as core Discipline A) will inevitably involve having sufficient knowledge of Mathematics and Chemistry, the student should be able to choose these subjects either as Discipline B or as an Open Elective.

- Since the list of Open Electives that will be offered by the Physics departments being applied in nature and will be useful for Physics graduates also, they should also be accessible for the students to choose (if their content is not covered in the syllabus of Physics as Discipline A).
- Some Open Electives should be multi-disciplinary and should be designed by 2 to 3 separate faculty (eg. Nanoscience and Nanotechnology)
- The SECs should be treated as 'Non-credit compulsory Courses', due the nature of the courses and to reduce the Credit load on students.
- Research should start in the VII semester itself, since it is difficult to do a meaningful project in only the 8th semester. This is especially important since NEP provides an opportunity for students to directly go for a Ph D program after the 4 year Honours program.
- Since the NEP suggests a 70:30 ratio for summative and formative assessments, the syllabus for the core discipline must be proportionately reduced and the 30% internal (formative) assessment can be made for the following:
 - One 10% mid-semester test
 - Two 10% each Activity based tasks
- The Question Paper patterns should be left to the prerogative of the respective University to design as per their convenience.
- An extensive training for Physics undergraduate teachers that integrates Outcome Based Education and the New Education Policy has to be provided for effective implementation in the coming years.

Programme Educational Objectives:

- 1. Graduates will demonstrate competence in respective domain as they apply skills to conduct scientific research and contribute to quality education.
- 2. Graduates will be recognized as experts in educational and research institutes as well as industries in identifying and solving global challenges.
- 3. Graduates will become leading researchers and professors who create and disseminate new knowledge in scientific and allied fields.

Graduate Attributes and Programme Outcomes:

Exit with:	Credits Required
Certificate upon the Successful Completion of the First Year (Two Semesters) of the multidisciplinary Four-year Undergraduate Programme/Five-year Integrated	44 - 48
Master's Degree Programme	

- 1. **Discipline Knowledge:** Knowledge of science and ability to apply to relevant areas.
- 2. **Problem solving:** Execute a solution process using first principles of science to solve problems related to respective discipline.
- 3. **Modern tool usage:** Use a modern scientific, engineering and IT tool or technique for solving problems in the areas of their discipline.
- 4. Ethics: Apply the professional ethics and norms in respective discipline.
- 5. **Individual and teamwork:** Work effectively as an individual as a team member in a multidisciplinary team.
- 6. **Communication:** Communicate effectively with the stake holders, and give and receive clear instructions.

Exit with:	Credits Required
A Diploma upon the Successful Completion of the Second Year (Four Semesters) of the	88 - 96
multidisciplinary Four-year Undergraduate Programme/Five-year Integrated Master's	
Degree Programme	

- 1. **Discipline Knowledge:** Knowledge of science and ability to apply to relevant areas.
- 2. **Conduct investigations:** Conduct investigations of technical issues as per their level of understanding and knowledge.
- 3. **Problem solving:** Formulate and implement a solution process using first principles of science to solve problems related to respective discipline.
- 4. **Modern tool usage:** Apply a modern scientific, engineering and IT tool or technique for solving problems in the areas of their discipline.
- 5. Ethics: Apply and commit to the professional ethics and norms in respective profession.
- 6. Individual and teamwork: Work effectively as an individual in a multidisciplinary team.
- 7. **Communication:** Communicate effectively with the stake holders, and give and receive clear instructions.

Exit with:		
Basic Bachelor Degree at the Successful Completion of the Third Year (Six Semesters)	132 - 144	
of the multidisciplinary Four- year Undergraduate Programme/Five-year Integrated		
Master's Degree Programme		

- 1. **Discipline Knowledge:** Knowledge of basics of science and ability to apply the understanding of fundamentals of major discipline in solving complex problems.
- 2. **Conduct investigations:** Conduct investigations of issues in their respective disciplines and arrive at valid conclusions.
- 3. **Problem solving:** Implement a solution process using first principles of science to solve problems related to respective discipline.
- 4. **Modern tool usage:** Select and use a modern scientific, engineering and IT tool or technique for solving problems in the areas of their discipline.
- 5. **Environment and Society:** Evaluate the impact of scientific solutions on society and environment and the need for sustainable solutions.
- 6. Ethics: Demonstrate professional ethics, responsibilities and norms in respective profession.
- 7. **Individual and teamwork:** Work effectively as an individual as a team member and as a leader in a multidisciplinary team.
- 8. **Communication:** Communicate effectively with the stake holders, write and comprehend project reports and documentation, deliver effective presentations, and give and receive clear instructions.
- 9. **Project Management and Finance:** Apply the knowledge of scientific and technological principles to one's own work to manage projects in multidisciplinary settings.
- 10. Lifelong Learning: Engage in lifelong learning in the context of changing trends in respective discipline.

Exit with:	Credits
	Required
Bachelor Degree with Honours in a Discipline at the Successful Completion of the	176 - 192
Fourth Years (Eight Semesters) of the multidisciplinary Four-year Undergraduate	
Programme/Five-year Integrated Master's Degree Programme	

- 1. **Discipline Knowledge:** Knowledge of basics of science and research, and ability to apply the understanding of fundamentals of specialized discipline in solving complex scientific problems.
- 2. **Conduct investigations:** Conduct investigations of issues using research methods and research-based discipline knowledge including design of experiments, data collection, interpretation and analysis to arrive at valid conclusions.
- 3. **Problem analysis:** Identify, formulate and analyze complex scientific problems using first principles of respective discipline.
- 4. **Design and Development of solutions:** Design solutions for complex scientific problems and execute them by considering the environmental, societal and public safety aspects appropriately.

- 5. **Modern tool usage:** Identify, select and use a modern scientific, engineering and IT tool or technique for modelling, prediction, data analysis and solving problems in the areas of their discipline.
- 6. **Environment and Society:** Evaluate the impact of scientific solutions on society and environment and design sustainable solutions.
- 7. Ethics: Demonstrate professional ethics, responsibilities and norms in respective profession.
- 8. **Individual and teamwork:** Work effectively as an individual as a team member and as a leader in a multidisciplinary team.
- 9. **Communication:** Communicate effectively with the stakeholders with emphasis on communicating with scientific community, comprehend scientific reports, write research papers and projects proposals and reports, deliver effective presentations, and give and receive clear instructions.
- 10. **Project Management and Finance:** Apply the knowledge of scientific and technological principles to one's own work to manage projects in multidisciplinary settings.
- 11. **Lifelong Learning:** Identify knowledge gaps and engage in lifelong learning in the context of changing trends in respective discipline.

Options for Study

- The programmes are flexible enough to allow liberty to students in designing them according to their requirements. Students may choose a single Major, one Major with a Minor, and one Major with two Minors. Teacher Education or Vocational courses may be chosen in place of Minor/s. Below listed are the various options students may choose from.
- One Major subject/discipline, Two Languages, Generic Electives, Ability Enhancement, Skill Development and Vocational courses including Extracurricular Activities.
- One Major and one Minor subject/discipline along with Languages, Generic Electives, Ability Enhancement, Skill Development and Vocational courses including Extracurricular Activities
- Two Major subject/disciplines along with Languages, Generic Electives, Ability Enhancement, Skill Development and Vocational courses, including Extracurricular Activities (subject to fulfilling the requirements as stated in 3.i and 3.ii)
- One Major subject/discipline and one Vocational course along with Languages, Generic Electives, Ability Enhancement and Skill Development and courses including Extracurricular Activities.
- One Major Discipline and One Education Discipline along with Languages, Generic Electives, Ability Enhancement and Skill Development Courses including Extracurricular Activities.

Proposed Curriculum Framework for Multidisciplinary Four- year Undergraduate Programme

Year	Objective	Nature of Courses	Outcome	No. of	
		1 Major Core Courses	Understanding of Dissiplines		
		2 Minor/Related Discipline	Language Competency	1+1 1 + 1	
1 /		2. Wino/ Related Discipline	Gaining perspective of	1+1 2+2	
1st year – st nd	Understanding	J. Languages, A Ability Enhancement	context/Generic skills	2 ± 2 1 ± 1	
(1 & 2	and Exploration	4. Admity Emancement	Basic skills sets to pursue any	1 – 1	
Semesters)	L.	5 Skill Enhancement/	vocation	1+1	
		Development Courses	vocution	1 1	
		Exit option with Certific	ation		
		1. Major Core Courses	Understanding of disciplines	2+2	
2 Vear -		2. Minor/ Related Discipline	Gaining perspective of context	1 + 1	
rd th	Focus and	3. Ability Enhancement	Skill sets to pursue vocation	1 + 1	
(3 & 4	Immersion	4. Skill based Vocational	Development of various Domains	1 + 1	
Semesters)		5. Extra Curricular Activities	of mind &Personality	1+1	
		Exit Option with Diplo	oma		
		1. Major Discipline Core	In depth learning of	2+2	
rd		and Elective Courses	major and minor disciplines. Skill		
3 Year -	Real time	2. Minor Discipline/	sets for employability.	1 + 1	
$(5^{\text{tn}} \& 6^{\text{tn}})$	Learning	Generic or Vocational	Exposure to discipline beyond the	1 + 1	
Semesters)	Dearning	Electives /Field based	chosen Subject		
		Learning/ Res. Project	Experiential learning/ Res.		
Exit option with Bachelor Degree					
th		Major Discipline Core and Elective	Deeper and Advanced Learning of	4+4	
4 Year -	Deener	courses	Major Discipline Foundation to		
$(7 \& 8)^{\text{th}}$	Concentration	Research/Project Work with	pursue Doctoral Studies &		
Semesters)	Concentration	Dissertation	Developing Research competencies		
Bachelor Degree with Honours					
		Major Discipline Core and	Deeper and	4+4/6+6	
5th Voor		Elective	Advanced Learning		
(9th & 10th)	Master of the	courses/Research/Project	of the Major		
Semesters)	subject	Work with Dissertation	Discipline towards		
Semesters			gaining proficiency		
			over the subject		
Master's Degree					

MODEL FOUND APPROPRIATE AND ADOPTED

IIA. Model Program Structures for the Under-Graduate Programs

Bachel Hons.) i practica and one	or of Science (Basic/ n subjects with al, with one major minor Sem.	Discipline Core (DSC) (Credits) (L+T+P)	Discipline Elective(DSE) / Open Elective (OE) (Credits) (L+T+P)	Ability Enhancer Compulsory Cou (AECC), Langua (Credits) (L+T+I	ment irses iges P)	Skill Enhancement	t Courses (SEC)	Total Credits
Skill ba	ased (Credits) (L+'	Γ+P)		Value based (C	(L+	T+P)		
Ι	Discipline A1(4+2) Discipline B1(4+2)	OE-1 (3)	L1-1(3), L2-1(3) (4 hrs each)	SEC-1: Digital Fl (1+0+2)	uency (2)	Physical Education for fitness(1)(0+0+2)	Health & Wellness (1) (0+0+2)	25
П	Discipline A2(4+2) Discipline B2(4+2)	OE-2 (3)	L1-2(3), L2-2(3) (4 hrs each)	Environmental Studies (2)		Physical Education - Yoga(1) (0+0+2)	NCC/NSS/R&R(S&G)/ Cultural (1) (0+0+2)	25
Exit op	tion with Certifica	nte (50 credits)						
III	Discipline A3(4+2) Discipline B3(4+2)	OE-3 (3)	L1-3(3), L2-3(3) (4 hrs each)	SEC-2: Artificial lligence (2)(1+0+)	Inte- 2)	Physical Education- Sports skills(1)(0+0+2)	NCC/NSS/R&R(S&G)/C ultural (1) (0+0+2)	25
IV	Discipline A4(4+2) Discipline B4(4+2)	OE-4 (3)	L1-4(3), L2-4(3) (4 hrs each)	Constitution of In	dia (2)	Physical Education -Games (1) (0+0+2)	NCC/NSS/R&R(S&G)/C ultural (1) (0+0+2)	25
Exit op	tion with Diploma	(100 credits) OR Choose an	y one of the core subjects as	Major and the ot	ther as Min	or		•
V	Discipline A5(3+2) Discipline A6(3+2) Discipline B5(3+2)		Vocational-1 (3) SEC-3: SEC such as Cyber Security (2) (1+0+2)		20			
VI	VI Discipline A7(3+2) Discipline A8(3+2) Discipline B6(3+2) Vocational-2 (3) Internship (2) SEC-4: Professional Communication (2)				22			
Exit op	tion with Bachelo	r of Arts, B.A./ Bachelor of S	Science, B.Sc. Basic Degree (1	42 credits) or con	ntinue studi	ies with the Major		
VII	I Discipline Discipline A, E-1 (3) 1 A9(3+2) Discipline A, E-2 (3) 1 Discipline Res.Methodology (3) 1 A10(3+2) Discipline A11(3) 1			22				
VIII Discipline A12(3+2) Discipline A, E-3(3) 20 Discipline A13(3) Research Project (6)* 20					20			
Award	Award of Bachelor of Arts Honours, B.A. (Hons.)/ Bachelor of Science Honours, B.Sc. (Hons) degree in a discipline (184 credits)							

Curriculum Structure-Physics

(Core and Electives)

Semesters- I to X

SEM	DSC	Core Papers		
Sem-1 :	A1	Mechanics & Properties of Matter		
Sem -2	A2	Electricity and Magnetism		
Sem-3 :	A3	Wave motion and optics		
Sem-4 :	A4	Thermal Physics & Electronics		
Sem-5 :	A5 A6	 Classical Mechanics and Quantum Mechanics- I Elements of Atomic, Molecular Physics 		
Sem -6 :	A7 A8	 Elements of Nuclear Physics and Nuclear Instruments Elements of Condensed Matter Physics 		
Sem-7	A9 A10 A11	 Mathematical Methods of Physics – I Classical Electrodynamics. Experimental methods of Physics Research Methodology (Select Two DSE subjects from the Pool B-I shown below) 		
Sem-8	A12 A13 A14	 Classical Mechanics and Quantum Mechanics-II Statistical Mechanics Astrophysics & Astronomy Research Project* (Select Two DSE subjects from the Pool B-II shown below) *In lieu of the research Project, two additional elective papers/ Internship may be offered. 		
Sem-9	A15	 Mathematical Methods of Physics – II (Select One DSE subjects from the Pool B-III shown below) Research Project 		
Sem-10	A17	 Quantum Mechanics – III (Select One DSE subjects from the Pool B-IV shown below) Research Project 		

* The Topics of 5th Sem and above need to be revisited

Open Electives for 1st to 4th Semesters

Sl.No.	1 to 4 Semester	
1.	Energy Sources	
2.	Climate Science	
3.	Astronomy	
4.	Medical Physics	
5.	Optical Instruments	
6.	Sports Science	
7.	Nanotechnology	
8.	Electrical Instruments	
9.	9. Electronic Instruments	
10.	Physics for all	
11.	Space Missions	

Discipline Specific Electives for 7th to 10th Semesters

	7 th Sem Electives Pool B-I (Select any two)		8 th Sem Electives Pool B-II (Select any two)
А.	Condensed Matter Physics-1	A.	Atomic & Molecular Physics-1
B.	Nuclear and Particle Physics	B.	Materials Physics & Nano materials
C.	Theoretical and Computational Physics-I	C.	Lasers and non-linear optics
D.	Biophysics	D.	Plasma Physics
E.	Astronomy and Astrophysics	E.	Physics of Semiconductor devices

	9 th Sem Electives		10 th Sem Electives
	(Specialization papers)		(Specialization papers)
	Pool B-III		Pool B-IV
А.	Condensed Matter Physics-2	A.	Condensed Matter Physics-3
B.	Nuclear and Particle Physics-2	B.	Nuclear and Particle Physics-3
C.	Atomic & Molecular spectroscopy-1	C.	Atomic & Molecular spectroscopy-2
D.	Materials Physics & Nanophysics –1	D.	Materials Physics & Nanophysics -2
E.	Theoretical and Computational Physics-I	E.	Theoretical and Computational Physics-2
F.	Astronomy and Astrophysics-1	F.	Astronomy and Astrophysics-2

Detailed Syllabus for Semesters I & II

B.Sc., Physics

Detailed Syllabus for Semesters I & II

Course Content Semester – I

Mechanics and Properties of Matter

Course Title: Mechanics and Properties of Matter	Course Credits:4
Total Contact Hours: 52	Duration of ESA: 3 hours
Formative Assessment Marks: 30	Summative Assessment Marks: 70
Model Syllabus Authors: Physics Expert Committee	

Programme Outcomes (POs)

PO-1: Discipline Knowledge: Knowledge of science and ability to apply to relevant areas.

PO-2: Problem solving: Execute a solution process using first principles of science to solve problems related to respective discipline.

PO-3: Modern tool usage: Use a modern scientific, engineering and IT tool or technique for solving problems in the areas of their discipline.

PO-4: Ethics: Apply the professional ethics and norms in respective discipline.

PO-5: Individual and teamwork: Work effectively as an individual as a team member in a multidisciplinary team.

PO-6: Communication: Communicate effectively with the stake holders, and give and receive clear instructions.

Course Articulation Matrix:

Mapping of Course Outcomes (COs) with Program Outcomes (POs)

Program Outcomes (POs)

Course Outcomes (COs) (UGC guidelines)		2	3	4	5	6
CO-1: Will learn fixing units, tabulation of observations, analysis of data (graphical/analytical)	X	X				Х
CO-2: Will learn about accuracy of measurement and sources of errors, importance of significant figures.	X	X				
CO-3: Will know how g can be determined experimentally and derive satisfaction.	x					
CO-4: Will see the difference between simple and torsional pendulum and their use in the determination of various physical parameters.	X			X	X	X
CO-5: Will come to know how various elastic moduli can be determined.	X				х	X

CO-6: Will measure surface tension and viscosity and appreciate the methods adopted.	X	X			
CO-7: Will get hands on experience of different equipment.	X	X	X	X	x

Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course are Marked 'X' in the intersection cell if a course outcome addresses a particular program outcome.

	Mechanics & Properties of Matter	Hrs			
Credit : 4+2	Unit – 1 Theory : 4 hours /Week				
Chapter No. 1	Topics to be covered/taught/learnt: Units and measurements: System of units (CGS and SI), measurement of length, mass and time, dimensions of physical quantities, dimensional formulae. Minimum deviation, errors.				
Chapter No. 2	Momentum and Energy : Work and energy, Conservation of momentum (linear). Conservation of energy with examples. Motion of rockets.				
Chapter No. 3	Special Theory of Relativity: Constancy of speed of light. Postulates of Special Theory of Relativity. Length contraction. Time dilation. Relativistic addition of velocities.				
Topics for self study(If any)	Self Study Chapter.4 Laws of Motion: Newton's Laws of motion. Dynamics of single and a system of particles. Centre of mass. Ref: 1-4,9,10				
	Suggested Activities				
Activity No. 1 Activity No. 2	 1. i). Students can measure diameters of small balls of different size and estimate their volumes. 2. ii). Students can measure lengths of nails of different size. iii). Students can measure volume of a liquid iv). Students can measure distances and put the result both in CGS and SI units in 2, 3 and 4 significant figures. Ask them to mention the precession of the measurement. v). students can estimate standard deviations wherever possible. Students can try and understand conservation of energy in every day examples. For example: i) What happens in solar conservation panels ii) Pushing an object on the table it moves iii) Moving car hits a parked car causes parked car to move. In these cases, energy is conserved. How? Understand and verify if possible. 				
	Unit 0				
Chapter No. 4.	Laws of Motion: Newton's Laws of motion. Dynamics of single and a system of particles. Centre of mass.				
Chapter No. 5.	Dynamics of Rigid bodies : Rotational motion about an axis, Relation between torque and angular momentum, Rotational energy. moment of inertia: M I of a rectangular Lamina and solid cylinders. Flywheel, Theory of compound pendulum and determination of g.				
Chapter No. 6.	Gravitation: Law of Gravitation. Motion of a particle in a central force field (motion is in a plane, angular momentum is conserved, areal velocity is constant). Kepler's laws (statements). Satellite in a circular orbit.	(13)			

Topics for self study(If any)	Chapter 7: Geosynchronous orbits. Basic idea of global positioning system (GPS). Ref: 1-4,9,10		
	Suggested Activities		
Activity No. 3	Activity: Moment of inertia is an abstract concept. It simply gives a measure of rotational inertia of a rigid body and it is proportional to the product of the square of radius, r of the body and its mass, m. Students by referring to websites, can construct and perform simple experiments to verify that MI α mr ² .		
Reference:www.khanacademy.org,www.pinterest.cwww.serc.cerleton.edn			
Activity No. 4	Activity: Prepare suitable charts and give seminar talks in the class.		

Unit - 3					
Chapter No. 8	Elasticity: Hooke's law - Stress-strain diagram, elastic moduli-relation between elastic constants, Poisson's Ratio-expression for Poisson's ratio in terms of elastic constants. Work done in stretching and work done in twisting a wire-Twisting couple on a cylinder. Torsional pendulum-Determination of rigidity modulus and moment of inertia - q, η and σ by Searle's method	(13)			
	Suggested Activities				
Activity No. 5	Activity: Arrange a steel spring with its top fixed with a rigid support on a wall and a meter scale along side. Add 100 g load at a time on the bottom of the hanger in steps. This means that while putting each 100g load, we are increasing the stretching force by 1N. Measure the extension for loads up to 500g. Plot a graph of extension versus load. Shape of the graph should be a straight line indicating that the ratio of load to extension is constant. Go for higher loads and find out elastic limit of the material.				
Activity No.6	Activity: Repeat the above experiment with rubber and other materials and find out what happens after exceeding elastic limit. Plot and interpret.				

	Unit - 4	
Chapter No. 9	Surface tension: Definition of surface tension. Surface energy, relation between surface tension and surface energy, pressure difference across curved surface example, excess pressure inside spherical liquid drop, angle of contact.	
Chapter No. 11	Viscosity: Streamline flow, turbulent flow, equation of continuity, determination of coefficient of viscosity by Poisulle's method, Stoke's method. Problems.	(13)
Topics for self study(If any)	Capillarity determination of surface tension by drop weight method. Ref: 6,7,9,10	
	Suggested Activities	
Activity No.7	 Measure surface tension of water and other common liquids and compare and learn Why water has high ST? think of reasons. Check whether ST is a function of temperature? You can do it by heating the water to different temperatures and measure ST. Plot ST versus T and learn how it behaves. Mix some quantity of kerosene or any oil to water and measure ST. Check whether ST for the mixture is more or less than pure water. List the reasons. 	
Activity No. 8	 Activity: 2. Collect a set of different liquids and measure their viscosity. i) Find out whether sticky or non-sticky liquids are most viscous. List the reasons. ii) Mix non sticky liquid to the sticky liquid in defined quantities and measure viscosity. Find out viscosity is increasing or decreasing with increase of non-sticky liquid concentration. iii) Do the above experiment by mixing sticky liquid to the non sticky liquid. Find out change in viscosity with increase of concentration of sticky liquid. List the applications where concept of Viscosity plays a dominant role 	

Text Books:

Sl No	Title of the Book	Authors Name	Publisher	Year of Publication
1	Mechanics by, New Eition	D. S. Mathur	S.Chand & Co.	2000
2	Mechancis and Relativity by 3 rd Edition,	Vidwan Singh Soni,	PHI Learning Pvt. Ltd.	
3	Mechanics Berkeley Physics Course, Vol.1:	Charles Kittel, <i>et.al</i> .	Tata McGraw-Hill	2007
4	Properties of Matter	Brijlal & Subramanyam.		

References Books

Sl No	Title of the Book	Authors Name	Publisher	Year of Publication
1	Physics. 9 th Edn,	Resnick, Halliday & Walter,	Wiley	2010
2	Physics Vol-I	Halliday and Resnick,		

List of Experiments to be performed in the Laboratory:

1.	Determination of g using bar pendulum (L versus T and L versus LT ² graphs).
2.	Determination of moment of inertia of a Fly Wheel.
3.	Determination of rigidity modulus using torsional pendulum.
4.	Modulus of rigidity of a rod – Static torsion method.
5.	Determination of elastic constants of a wire by Searle's method.
6.	Young's modulus by Koenig's method.
7.	Viscosity by Stoke's method.
8.	Verification of Hook's law.
9.	Determination of surface tension of a liquid and the interfacial tension between two liquids using drop weight method.
10.	Study of motion of a spring and to calculate Spring constant, g and unknown mass.
11.	Determination of Young's modulus of a bar by the single cantilever method.
12.	Determination of Young's modulus of a bar by uniform bending method.
13.	Radius of capillary tube by mercury pellet method.
14	Verification of parallel and perpendicular axis theorems.

(Minimum EIGHT experiments have to be carried out)

Reference Book for Laboratory Experiments

Sl	Title of the Book	Authors Name	Publisher	Year of
No				Publication
1	Physics through experiments	B.Saraf	Vikas	2013
			Publications	
2	A lab manual of Physics for		Vikas	
	undergraduate classes, 1 st Edition,		Publications.	
3	BSc Practical Physics Revised Ed	CL Arora	S.Chand & Co.	2007
4	An advanced course in practical	D. Chatopadhyay,	New Central	2002
	physics.	PC Rakshit, B.Saha	Book Agency Pvt	
			Ltd.	

Formative Assessment				
Assessment Occasion	Marks			
End of Unit-1 (Activity)	10			
End of Unit-2 (Test)	10			
End of Unit-3 (Activity)	10			
Total	30			

_

Semester – II

Electricity & Magnetism

Course Title: Electricity and Magnetism	Course Credits: 4
Total Contact Hours: 52	Duration of ESA: 3 hours
Formative Assessment Marks: 30	Summative Assessment Marks: 70
Model Syllabus Authors:	Physics Expert Committee

Programme Outcomes

- 1. Discipline Knowledge: Knowledge of science and ability to apply to relevant areas.
- 2. Problem solving: Execute a solution process using first principles of science to solve problems related to respective discipline.
- 3. Modern tool usage: Use a modern scientific, engineering and IT tool or technique for solving problems in the areas of their discipline.
- 4. Ethics: Apply the professional ethics and norms in respective discipline.
- 5. Individual and teamwork: Work effectively as an individual as a team member in a multidisciplinary team.
- 6. Communication: Communicate effectively with the stake holders, and give and receive clear instructions.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

Program Outcomes (POs)

Course Outcomes (COs)	1	2	3	4	5	6
i. Demonstrate Gauss law, Coulomb's law for the electric field, and apply it to systems of point charges as well as line, surface, and volume distributions of charges.		x				
ii. Explain and differentiate the vector (electric fields, Coulomb's law) and scalar (electric potential, electric potential energy) formalisms of electrostatics.	x					
iii. Apply Gauss's law of electrostatics to solve a variety of problems.	x	x			X	
iv. Describe the magnetic field produced by magnetic dipoles and electric currents.	x					
v. Explain Faraday-Lenz and Maxwell laws to articulate the relationship between electric and magnetic fields.	x					
vi. Describe how magnetism is produced and list examples where its effects are observed.	x				X	x
vii. Apply Kirchhoff's rules to analyze AC circuits consisting of parallel and/or series combinations of voltage sources and resistors and to describe the graphical relationship of resistance, capacitor and inductor.		x			X	X

viii. Apply various network theorems such as Superposition,						
Thevenin, Norton, Reciprocity, Maximum Power	х	x			х	X
Transfer, etc. and their applications in electronics,						
electrical circuit analysis, and electrical machines.						

Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course. Mark 'X' in the intersection cell if a course outcome addresses a particular program outcome.

	Electricity & Magnetism				
Unit – 1					
Chapter No. 1	Topics to be covered/taught/learnt:	3			
	Electric charge and field Coulomb's law, electric field strength, electric field lines, point charge in an electric field and electric dipole, work done by a charge (derivation of the expression for potential energy)				
Chapter No. 2	Topics to be Covered	3			
	Gauss's law and its applications (electric fields of a (i) spherical charge distribution, (ii) line charge and (iii) an infinite flat sheet of charge).				
Chapter No. 3	Topics to be Covered	7			
	Electric potential, line integral, gradient of a scalar function, relation between field and potential. Potential due to point charge and distribution of charges (Examples: potential associated with a spherical charge distribution, infinite line charge distribution, infinite plane sheet of charges). Constant potential surfaces, Potential due to a dipole and electric quadrupole.				
Topics for self study(If any)	Constant potential surfaces - for self learning Work out problems listed in the reference				
	Suggested Activities				
Activity No. 1	 Learn the difference between and DC and AC electricity and their characteristics. Voltage and line frequency standards in different countries. A small project report on production of electricity as a source of energy: Different methods 				

Activity No. 2	 Learn to use a multimeter (analog and digital) to measure voltage, current and resistance. Continuity testing of a wire. Learn about household electrical connection terminals: Live, neutral and ground and voltage between the terminals. Role of earthing and safety measures 	
	Unit – 2	
Chapter No. 4.	Topics to be covered Conductors in electrostatic field Conductors and insulators, conductors in electric field. Capacitance and capacitors, calculating capacitance in a parallel plate capacitor, parallel plate capacitor with dielectric, dielectrics: an atomic view. Energy stored in a capacitor, Dielectric and Guass's law.	6
Chapter No. 5.	Topics to be covered Electric currents and current density. Electrical conductivity and Ohm's law. Physics of electrical conduction, conduction in metals and semiconductors, circuits and circuit elements: Variable currents in capacitor circuits, Resistor, inductor and capacitor and their combination. force on a moving charge.	7
Topics for self study(If any)	Currents and voltage in combination of R , L and C circuits	
	Suggested Activities	
Activity No. 3	 Learn about electrical appliances which work with AC and DC electricity Learn about types of resistors and their colour codes and types of capacitors(electrolytic and non-electrolytic) 	
Activity No. 4	 Learn about power transmission: 3-phase electricity, voltage and phase Visit a nearby electrical power station. Interact with line men, Electrical engineers and managers. Discuss about power loss in transmission. How to reduce it? Prepare a small project report on street lighting and types of electrical bulbs. 	

	Unit – 3						
Chapter No.6	Topics to be covered Magnetism Definition of magnetic field, Ampere's law and Biot-Savart law (magnetic force and magnetic flux), Magnetic force on a current carrying conductor, Hall effect. Electromagnetic induction, conducting rod moving in a magnetic field, law of induction and mutual inductance, self inductance and energy stored in a magnetic field.	7					
Chapter No. 7	Topics to be covered	6					
	Alternating current circuits: Resonant circuit, alternating current, quality factor, RL, RC, LC, LCR circuits, admittance and impedance, power and energy in AC circuits.						
Topics for self study(If any)	Hall Effect						
	Suggested Activities						
Activity No. 5	 Activity: 1. Prepare a small project report on street lighting and types of electrical bulbs. 2. Learn the measurement of electric current using tangent galvanometer. 						
Activity No.6	Activity: Build a small coil with insulated copper wire. Connect an ammeter micro/milli ammeter. Verify magnetic induction using a powerful bar magnet.						
	Unit - 4						
Chapter No. 8	Electromagnetic waves: Equation of continuity, Maxwell's equations, displacement current, electromagnetic wave, energy transported by electromagnetic waves. Electromagnetic waves in different frames of reference, Field of a current loop, magnetic moment, Electric current in atoms, electron spin and magnetic moment, magnetization and magnetic susceptibility.	8					
Chapter No. 9	Topics to be covered: Types of magnetic materials: diamagnetic, paramagnetic and ferromagnetic materials. B-H hysteresis curves.	5					
Topics for self study(If any)	B-H curves and its characteristics Ferrites						

	Suggested Activities	
Activity No.7	 Activity: 1. Prepare a small project report on production of magnetic field: Permanent magnets, electromagnets and superconducting magnets. 2. Learn the principle of working of a Gauss meter to measure magnetic field 	
Activity No. 8	 Activity: 1. Model the earth's magnetic field with a diagram. Explain the effect of tilt of the earth's axis and reasons for the change in the tilt of the earth's axis over thousands of years. 	

References Books:

Sl No	Title of the Book	Authors Name	Publisher	Year of Publication
1	Physics-Part-II,	David Halliday and Robert Resnick	Wiley Eastern Limited	2001
2	Berkeley Physics Course, Vol-2, Electricity and Magnetism, Special Edition	Edward M Purcell	Tata Mc Graw-Hill Publishing Company Ltd, New Delhi	2008

List of Experiments to be performed in the Laboratory

1.	Experiments on tracing of electric and magnetic flux lines for standard configuration.
2.	Determination of components of earth's magnetic field using a Ballistic galvanometer.
3.	Determination of capacitance of a condenser using B.G.
4.	Determination of high resistance by leakage using B.G.
5.	Determination of mutual inductance using BG.
6.	Charging and discharging of a capacitor(energy dissipated during charging and time constant measurements.
7.	Series and parallel resonance circuits (LCR circuits).
8.	Impedance of series RC circuits- determination of frequency of AC.
9.	Study the characteristics of a series RC and RL Circuit.
10.	Determination of self inductance of a coil.
11.	Verification of laws of combination of capacitances and determination of unknown capacitance using de - Sauty bridge.
12.	Determination of B _H using Helmholtz double coil galvanometer and potentiometer.

(Minimum EIGHT experiments have to be carried out)

Formative Assessment			
Assessment Occasion	Marks		
End of Unit-1 (Activity)	10		
End of Unit-2 (Test)	10		
End of Unit-3 (Activity)	10		
Total	30		

Syllabus for III and IV Semesters Semester-III Wave motion and Optics

	Content	Hrs
Unit – 1: Wa	aves and Superposition of Harmonic Waves	
Chapter 1. Waves	Plane and Spherical Waves. Longitudinal and Transverse Waves. Characteristics of wave motion, Plane Progressive (Travelling) Wave and its equation, Wave Equation – Differential form (derivation). Particle and Wave Velocities: Relation between them, Energy Transport – Expression for intensity of progressive wave, Newton's Formula for Velocity of Sound. Laplace's Correction (Derivation). Brief account of Ripple and Gravity Waves. Text Book : 1-4	05
Chapter 2. Superpositi on of Harmonic Waves	Linearity and Superposition Principle. Superposition of two collinear oscillations having (1) equal frequencies and (2) different frequencies (Beats) – Analytical treatment. Self Study: Superposition of two perpendicular Harmonic Oscillations: Lissajous Figures with equal and unequal frequency- Analytical treatment. Uses of Lissajous' figures. Text Book : 1-4	06
	Suggested Activities	
	Preparation of report and presentation on harmonics in musical instruments.	02
	Study of Characteristics of loud speaker and microphone.	
	Unit – 2: Standing Waves and Acoustics	
Chapter 3. Standing Waves	Velocity of transverse waves along a stretched string (derivation), Standing (Stationary) Waves in a String - Fixed and Free Ends (qualitative). Theory of Normal modes of vibration in a stretched string, Energy density and energy transport of a transverse wave along a stretched string. Vibrations in rods – longitudinal and transverse modes (qualitative). Velocity of Longitudinal Waves in gases (derivation). Self Study: Normal Modes of vibrations in Open and Closed Pipes – Analytical treatment. Concept of Resonance, Theory of Helmholtz resonator.	08
Chanter 4	Text Book : 1-4 Absorption coefficient Reverberation and Reverberation time. Sabine's Reverberation	03
Acoustics	formula (derivation), Factors affecting acoustics in buildings, Requisites for good acoustics. Acoustic measurements – intensity and pressure levels. Text Book : 1-4	

	Suggested Activities			
	Preparation of report and presentation on resonance phenomenon in natural and artificial	02		
	systems.			
	Visit to auditorium and preparation of report on materials / designs used for good			
	acoustics.			
	Unit – 3: Nature of light and Interference			
Chapter 5 Nature of	The corpuscular model of light-The wave model-Maxwells electromagnetic waves- Wave Particle Duality	4		
light	Text Book No 5; Sections 2.1 to 2.4 and 2.8			
Chapter 6 Interferenc e of light by division	Huygen's theory-Concept of wave-front-Interference pattern produced on the surface of water-Coherence-Interference of light waves by division of wave-front- Young's double slit experiment- derivation of expression for fringe width-Fresnel Biprism- Interference with white light- Numerical Problems	4		
of wave front	Text Book No 5; Sections 12.1 to 12.2, 14.1 to 14.5, 14.7 to 14.9			
Chapter 7 Interferenc e of light by division of	Interference by division of amplitude-Interference by a plane parallel film illuminated by a plane wave-Interference by a film with two non-parallel reflecting surfaces- color of thin films—Newton's rings-(Reflected light)-Michelson Interferometer-Determination of wavelength of light*	6		
amplitude	Text Book No 5; Sections 15.1 to 15.2, 15.8 to 15.11			
	Suggested Activities			
	Make Your Own Double Slit Experiment			
	Reference :(https://www.youtube.com/watch?v=kKdaRJ3vAmA)			
	Activity: What is the reason for the colors like rainbow which we see on ground when oil/petrol spills during rainfall?			
	Reference :https://www.scientificamerican.com/article/why-do-beautiful-bands-of/			
	Unit –4: Diffraction and Polarisation			
Chapter 8 Fraunhofer diffraction	Introduction- Fraunhofer diffractions- Single slit diffraction pattern-position of Maxima and Minima (Qualitative arguments)- Two slit diffraction pattern-position of Maxima and minima- Theory of plane diffraction grating-Grating spectrum- normal and oblique incidence- Resolving power and dispersive power of a grating Single slit; Double Slit. Multiple slits & Diffraction grating.	5		
	Text Book No 5; Sections 18.1 to 18.2, 18.6,18.8 to 18.9			
Chapter 9 Fresnel Diffraction	Fresnel Diffraction- Fresnel half period zones-Diffraction by a circular aperture- diffraction by an opaque disc-The zone plate -comparison between zone plate and convex lens.	3		
	Text Book No 5; Sections 20.1 to 20.3			

Chapter 10 Polarisatio n	Introduction-Production of polarized light- The wire Grid polarizer and Polaroid- Superposition of two disturbances-Phenomenon of double refraction-Quarter wave plates and half wave plates- Analysis of polarized light-optical activity	4
	Text Book No 5; Sections 22.1, 22.3,22.4,22.6 to 22.8	
	Suggested Activities	
	USING CDs AND DVDs AS DIFFRACTION Gratings	1
	Ref: https://www.nnin.org/sites/default/files/files/Karen_Rama_USING_CDs_AND_DVDs_ AS_DIFFRACTION_GRATINGS_0.pdf	
	1. What is the physics behind 3D movies? Group Discussion	
	2. (https://www.slideserve.com/rae/physics-behind-3d-movies-powerpoint-ppt-presentation)	

Text Books

Sl No	Title of the Book	Authors Name	Publisher	Year of
				Publication
1	The Physics of	N K Bajaj	Tata McGraw-Hill	1984
	Waves and		Publishing Company Ltd.,	
	Oscillations,		Second Edition,	
2	Waves and	N Subramanyam	Vikas Publishing House	2010
	Oscillations	and Brij Lal	Pvt. Ltd., Second Revised	
		-	Edition	
3	A Text Book of	D R Khanna and R	Atma Ram & Sons, Third	1952
	Sound	S Bedi	Edition	
4	Oscillations and	Satya Prakash	Pragathi Prakashan, Meerut,	2003
	Waves		Second Edition	
5	Optics	Ajoy Ghatak	McGraw Hill Education	2017
			(India) Pvt Ltd	
6	A text Book of	Brij Lal, M N	S. Chand Publishing	2012
	Optics	Avadhanulu & N	_	
	_	Subrahmanyam		

References Books

Sl No	Title of the Book	Authors Name	Publisher	Year of Publication
1	Berkeley Physics Course – Waves,	Frank S Crawford Jr.	Tata Mc Graw-Hill Publishing Company Ltd., Special Indian Edition,.	2011
2	Optics	Eugene Hecht	Pearson Paperback	2019
3	Introduction To Optics	Pedrotti and Frank L	Pearson India	3rd Edition
4	Fundamentals of Optics	Francis Jenkins Harvey White	McGraw Hill Education	2017

Sl No	Experiment
1	Velocity of sound through a wire using Sonometer.
2	Frequency of AC using Sonometer.
3	Study of Lissajous' Figures
4	To verify the laws of transverse vibration using Melde's apparatus.
5	Helmholtz resonator using tuning fork.
6	Helmholtz resonator using electrical signal generator.
7	To determine refractive index of the Material of a prism using sodium source.
8	To determine the dispersive power and Cauchy constants of the material of a prism using
	mercury source.
9	To determine the wavelength of sodium source using Michelson's interferometer.
10	To determine wavelength of sodium light using Fresnel Biprism.
11	To determine wavelength of sodium light using Newton's Rings
12	To determine the thickness of a thin paper by measuring the width of the interference
	fringes produced by a wedge-shaped Film.
13	To determine wavelength of (1) Na source and (2) spectral lines of Hg source using
	plane diffraction grating.
14	To determine dispersive power and resolving power of a plane diffraction grating.

List of Experiments to be performed in the Laboratory

Reference Book for Laboratory Experiments

Sl No	Title of the Book	Authors Name	Publisher	Year of Publication
1	Advanced Practical Physics for students	B.L. Flint and H.T. Worsnop	Asia Publishing House.	1971
2	A Text Book of Practical Physics	I. Prakash & Ramakrishna	Kitab Mahal, 11 th Edition	2011
3	Advanced level Physics Practicals	Michael Nelson and Jon M. Ogborn	Heinemann Educational Publishers, 4 th Edition	1985
4	A Laboratory Manual of Physics for undergraduate classes	D.P.Khandelwal	Vani Publications.	1985

	Semester-IV		
		THERMAL PHYSICS AND ELECTRONICS	
		Time: 4 Hrs. /week Max Marks :	
Unit 1		Laws of Thermodynamics	Hours
	Chapter 1	Extensive and intensive Thermodynamic Variables, Thermodynamic Equilibrium, Zeroth Law of Thermodynamics, Concept of Temperature, Concept of Work and Heat, State Functions, First Law of Thermodynamics and its differential form, Internal Energy, First Law & various processes, Applications of First Law: Equation of state for an adiabatic process, Work Done during Isothermal and Adiabatic Processes, Compressibility and Expansion Co-efficient.	4
	Chapter 2	Second Law of Thermodynamics: Reversible and Irreversible process with examples. Conversion of Work into Heat and Heat into Work. Heat Engines: Carnot engine & efficiency (no derivation). Refrigerator & coefficient of performance, 2nd Law of Thermodynamics: Kelvin-Planck and Clausius Statements and their Equivalence. Carnot's Theorem. Applications of Second Law of Thermodynamics: Thermodynamic Scale of Temperature and its Equivalence to Perfect Gas Scale.	5
	Chapter 3	Entropy: Concept of Entropy, Clausius Theorem. Clausius Inequality, Second Law of Thermodynamics in terms of Entropy, Entropy of a perfect gas. Entropy Changes in Reversible and Irreversible processes with examples. Entropy of the Universe. Principle of Increase of Entropy. Temperature–Entropy diagrams for Carnot's Cycle. Third Law of Thermodynamics. Unattainability of Absolute Zero.	4
	Activities	 Make a dissertation on Laws of thermodynamics. Make a write up of heat engines and refrigerators. List the irreversible and irreversible processes which we may come across. Three important concepts in the study of thermodynamics are, temperature, heat, and internal energy. Discuss the meaning of these three concepts being careful to distinguish between them. <u>http://www.physics.umd.edu/perg/abp/think/thermo/temper.htm</u> 	
Unit 2	Chapter 4	Intermolynamic Potentials	2
		Energy, Their Definitions, Properties and Applications. Surface Films and Variation of Surface Tension with Temperature. Magnetic Work, Cooling due to adiabatic demagnetization.	5

	Chapter 5	Maxwell's Thermodynamic Relations	
		Derivations and applications of Maxwell's Relations(1) First	4
		order Phase Transitions with examples, Clausius-Clapeyron	
		Equation (2) Values of Cp-Cv (3)Joule-Thomson Effect and J-	
		T coefficient(Derivation) for Vander Walls gas.	
	Chapter 6	Kinetic Theory of Gases	
		Distribution of Velocities: Maxwell-Boltzmann Law of	2
		Distribution of Velocities in an Ideal Gas: Mean, RMS and	
		Most Probable Speeds. Degrees of Freedom, Law of	
		Equipartition of Energy (no derivation). Specific heats of	
		Gases.	
	Chapter 7	Radiation	
		Blackbody radiation, spectral distribution, concept of energy	4
		density and pressure of radiation (no derivation). Derivation of	
		Planck's law, deduction of Stefan-Boltzmann law and Wien's	
		displacement law from Planck's law.	
	Activities	1. Measuring the Solar Constant	
		Materials: Simple flat sided Jar and Thermometer.	
		Activity: Bottle containing water is exposed to solar radiation.	
		The raise in the temperature and time taken are noted. Calculate	
		the heat absorbed by water and relate it to the output of Sun.	
		2. Thermo emf	
		Materials: Suitable two dissimilar metal wires, voltage	
		measuring device.	
		Activity: In this experiment student will assemble the	
		thermocouple and study the three effects namely, Seebeck,	
		Peltier, and Thompson.	
		3. Inverse square law of radiation	
		Materials: A cardboard with grid, a cardboard with a hole,	
		supporting clips, ruler, candle.	
		4. Activity: Students set the device. They count the lighted	
		squares on the cardboard with the grid by varying the	
		distance. And make necessary measurements and	
		calculations to arrive at inverse square law of radiation.	
		5. Activity Based Physics Thinking Problems in	
		Thermodynamics: Kinetic Theory	
		6. <u>http://www.physics.umd.edu/perg/abp/think/thermo/kt.ht</u>	
	Chapter-8	Semiconductor devices	
		Introduction, p-n junction diode, Characteristics and	
		Parameters, Diode approximations, Hall-wave rectifier, Full-	
		wave recliner, Zener diode voltage regulators: Regulator	
		circuit with no load, Loaded Regulator. Numerical examples as	
Unit-3		applicable. Junction Transistors: Basias of PIT PIT concretion	07 hours
		Common Base Common Emitter and Common Collector	
		Characteristics BIT amplification Numerical examples as	
		annlicable	
		application.	

	Chapter-8	Operational amplifier	
		Introduction to Operational Amplifiers: Ideal OPAMP,	06 hours
		Inverting and Non-inverting OP-AMP circuits, OP-AMP	
		applications: voltage follower, addition, subtraction	
		a. Activity: Wire a DC power supply on a bread board or	
		groove board to give a regulated output voltage of	
		$+ 5 \text{ V}$; +15 V; Dual power output : $\pm 5 \text{ V}$;	
		Dual power output : ± 15 V	
		b. Use: 3-pin regulators	
		c. Learn to identify the terminals of different types	
		(packages) of BJTs.	
	Activities	d. In the case of power transistors, learn how to fix a heat	
		sink for the transistor.	
		e. Understand the concept of virtual ground of an OP-	
		AMP.	
		f. Learn the different types of op-amps used for different	
		applications.	
		What is a buffer? Prepare a report on the application of	
		buffers in instrumentation electronics.	
Unit-4	Chapter-9	Digital Electronics	
		Introduction, Switching and Logic Levels, Digital Waveform.	
		Number Systems: Decimal Number System, Binary Number	
		System, Converting Decimal to Binary, Hexadecimal Number	07 hours
		System: Converting Binary to Hexadecimal, Hexadecimal to	
		Binary,	
	Chapter-10	Boolean Algebra Theorems,	
		De Morgan's theorem. Digital Circuits: Logic gates, NOT	
		Gate, AND Gate, OR Gate, NAND Gate, NOR Gate, Algebraic	06 hours
		Simplification, NAND and NOR Implementation: NAND	00 nours
		Implementation, NOR Implementation.	
	Activition	1. Learn how to implement logic functions (AND and OR)	
	Activities	using just diodes and resistors.	l

Reference Books:

- Heat and Thermodynamics, M.W. Zemansky, Richard Dittman, 1981, McGraw-Hill.
- Thermal Physics, S. Garg, R. Bansal and Ghosh, 2nd Edition, 1993, Tata McGraw-Hill
- A Treatise on Heat, Meghnad Saha, and B.N.Srivastava, 1958, Indian Press
- Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer.
- Thermodynamics, Kinetic Theory & Statistical Thermodynamics, Sears & Salinger. 1988, Narosa.
- An Introduction to Thermal Physics, Daniel V Schroeder, 2020, Oxford University Press

Sl No	Title of the Book	Authors Name	Publisher	Year of
				Publication
1	Electronic Devices and Circuits	David A. Bell	PHI, New Delhi	2004
2	Integrated Electronics	Jacob Millman and CC Halkias		
3.	Digital Fundamentals	Floyd	PHI, New Delhi	2001

Lab Experiments List

1. Mechanical Equivalent of Heat by Callender and Barne's method

- 2. Coefficient of thermal conductivity of copper by Searle's apparatus
- 4. Coefficient of thermal conductivity of a bad conductor by Lee and Charlton's disc method
- 5. Value of Stefan's constant
- 6. Verification of Stefan's law
- 7. Variation of thermo-emf across two junctions of a thermocouple with temperature

8. Verification of Clasius – Clapeyron equation and determination of specific enthalpy

Sl No	Experiments on electro	Experiments on electronics				
9	V-I Characteristics of S	V-I Characteristics of Silicon & Germanium PN Junction diodes (FB & RB)				
	V-I Characteristics of Z	V-I Characteristics of Zener Diode and voltage regulator				
10	Characteristics of BJT i	Characteristics of BJT in Common Emitter Configuration				
	Frequency response of	Frequency response of CE Amplifier				
	Frequency response of G	CC Amplifier (Emit	ter Follower).			
11	Half Wave and Full Wa	ve Rectifier Withou	ıt Filter			
	Half Wave and Full Wa	ve Rectifier with Fi	lter			
12	Applications of Operati	onal Amplifier				
	Non-inverting and Inverting op-amp circuits					
	Voltage follower, Adde	r and Subtractor cire	cuits			
13	Truth table verification	of logic gates using	TTL 74 series ICs.			
	Transfer characteristics	of a TTL gate using	g CRO.			
	Logic Gates; Combinat	Logic Gates; Combinational Circuits; Sequential Circuits				
Sl No	Title of the Book	Authors Name	Publisher	Year of Publication		
1	Basic Electronics Lab		National	2015		
	(P242) Manual 2015-16		Institute of			
			Science Education and			
			Research			
			Bhubaneswar			

Suggested Readings:

1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962, 9e.

2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015, 1e.

Student seminars

Student (4 to 5 students in a group) groups may be assigned to give a seminar on a topic. They need to make a detailed study on the topic and prepare power point slides for the presentation. One student out of the group may be called randomly to present the certain portion of the topic. Similarly, other students may be called randomly to present remaining portion of the topic, so that each student must study whole topic. In a class 2 to 3 groups may present their topic.

Model Seminar Topics

- 1. Calorimetry
- 2. Thermometry
- 3. Kinetic theory of matter
- 4. Behavior of real gases
- 5. Transmission of heat
- 6. Transport phenomena in gases
- 7. Radiation laws
- 8. Laws of thermodynamics
- 9. Thermodynamical relationships
- 10. Heat engines
- 11. Production of low temperatures
- 12. Air conditioning systems
- 13. Entropy
- 14. Global warming
- 15. Classical and quantum statistics

SYLLABUS FOR OPEN ELECTIVES

(SEM I to IV)

3 Credits: 3 Lectures + 1 Tutorial

SYLLABUS FOR OPEN ELECTIVE

ENERGY SOURCES

Time: 2 hrs./week + 01 Hr tutorial

Г

Max Marks:

		No. of
I Init_I	Non-Banawahla anaray sources	lectures
	Chapter-1: Introduction	
	Energy concent-sources in general its significance & necessity	
	Classification of energy sources: Primary and Secondary energy Commercial and	
	Non-commercial energy Renewable and Non-renewable energy Conventional and	
	Non-conventional energy Based on Origin-Examples and limitations Importance of	04
	Non-commercial energy resources.	
	Chapter-2: Conventional energy sources	
	Fossil fuels & Nuclear energy- production & extraction, usage rate and limitations.	
	Impact on environment and their issues challenges. Overview of Indian & world	
	energy scenario with latest statistics- consumption & necessity. Need of eco-friendly	00
	& green energy & their related technology.	09
	Total	13
Unit-II	Renewable energy sources	
	Chapter-1: Introduction:	
	Need of renewable energy, non-conventional energy sources. An overview of	
	developments in Offshore Wind Energy, Tidal Energy, Wave energy systems, Ocean	
	Thermal Energy Conversion, solar energy, biomass, biochemical conversion, biogas	- -
	generation, geothermal energy tidal energy, Hydroelectricity.	05
	Chapter 2 : Solar energy:	
	Solar Energy-Key features, its importance, Merits & demerits of solar energy,	
	Applications of solar energy. Solar water heater, flat plate collector, solar distillation,	
	solar cooker, solar green houses, solar cell -brief discussion of each. Need and	
	characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, and	08
	sun tracking systems.	
	Total	13
Unit-III	Chapter-3: Wind and Tidal Energy harvesting:	
	Fundamentals of Wind energy, Wind Turbines and different electrical machines in	
	wind turbines, Power electronic interfaces, and grid interconnection topologies.	
	Ocean Energy Potential against Wind and Solar, Wave Characteristics and Statistics,	08
	Wave Energy Devices. Tide characteristics and Statistics, Tide Energy Technologies,	00
	Ocean Thermal Energy.	
	Chapter-4 : Geothermal and hydro energy	
	Geothermal Resources, Geothermal Technologies.	02
	Hydropower resources, hydropower technologies, environmental impact of hydro	03
	power sources.	~~
	Carbon captured technologies, cell, batteries, power consumption	01
	Total	13
		-
Activity for tutorial classes 01 lectures/week		
--	--	
1. Demonstration of on Solar energy, wind energy, etc, using training modules at		
Labs.		
2. Conversion of vibration to voltage using piezoelectric materials.		
3. Conversion of thermal energy into voltage using thermoelectric (using		
thermocouples or heat sensors) modules.		
4. Project report on Solar energy scenario in India		
5. Project report on Hydro energy scenario in India		
6. Project report on wind energy scenario in India		
7. Field trip to nearby Hydroelectric stations.		
8. Field trip to wind energy stations like Chitradurga, Hospet, Gadag, etc.		
9. Field trip to solar energy parks like Yeramaras near Raichur.		
10. Videos on solar energy, hydro energy and wind energy.		
Reference Books:		
1. Non-conventional energy sources - G.D Rai - Khanna Publishers, New		
Delhi		
2. Solar energy - M P Agarwal - S Chand and Co. Ltd.		
3. Solar energy - Suhas P Sukhative Tata McGraw - Hill Publishing Company		
Ltd.		
4. Godfrey Boyle, "Renewable Energy, Power for a sustainable future", 2004,		
Oxford University Press, in association with The Open University.		
5. Dr. P Jayakumar, Solar Energy: Resource Assessment Handbook, 2009		
6. J.Balfour, M.Shaw and S. Jarosek, Photovoltaics, Lawrence J Goodrich		
(USA).		
7. http://en.wikipedia.org/wiki/Renewable_energy		

Climate Science

Time: 2 hrs./week + 01 Hr tutorial

M. 1.1. 1.		(121
Module 1:	Atmosphere	(15 hours)
	Atmospheric Science (Meteorology) as a multidisciplinary science. Physical	
	and dynamic meteorology, Some terminology, difference between weather	
	and climate, weather and climate variables, composition of the present	
	atmosphere: fixed and variable gases, volume mixing ratio (VMR), sources	
	and sinks of gases in the atmosphere. Green house gases. Structure (layers)	
	of the atmosphere. Temperature variation in the atmosphere, temperature	
	lapse rate, mass, pressure and density variation in the atmosphere.	
	Distribution of winds.	
Module 2:	Climate Science	(13 hours)
	Overview of meteorological observations, measurement of : temperature,	
	humidity, wind speed and direction and pressure. Surface weather stations,	
	upper air observational network, satellite observation. Overview of clouds	
	and precipitation, aerosol size and concentration, nucleation, droplet growth	
	and condensation (qualitative description). Cloud seeding, lightning and	
	discharge. Formation of trade winds, cyclones.	
	Modelling of the atmosphere: General principles, Overview of General	
	Circulation Models (GCM) for weather forecasting and prediction.	
	Limitations of the models.	
	R and D institutions in India and abroad dedicated to climate Science,	
	NARL, IITM, CSIR Centre for Mathematical Modeling and Computer	
	Simulation, and many more	
Module 3:	Global Climate Change	(13 hours)
Module 3:	Global Climate Change Green house effect and global warming, Enhancement in concentration of	(13 hours)
Module 3:	Global Climate Change Green house effect and global warming, Enhancement in concentration of carbon dioxide and other green house gases in the atmosphere, Conventional	(13 hours)
Module 3:	Global Climate Change Green house effect and global warming, Enhancement in concentration of carbon dioxide and other green house gases in the atmosphere, Conventional and non-conventional energy sources and their usage. EL Nino/LA Nino	(13 hours)
Module 3:	Global Climate Change Green house effect and global warming, Enhancement in concentration of carbon dioxide and other green house gases in the atmosphere, Conventional and non-conventional energy sources and their usage. EL Nino/LA Nino Southern oscillations.	(13 hours)
Module 3:	Global Climate Change Green house effect and global warming, Enhancement in concentration of carbon dioxide and other green house gases in the atmosphere, Conventional and non-conventional energy sources and their usage. EL Nino/LA Nino Southern oscillations. Causes for global warming: Deforestation, fossil fuel burning,	(13 hours)
Module 3:	Global Climate Change Green house effect and global warming, Enhancement in concentration of carbon dioxide and other green house gases in the atmosphere, Conventional and non-conventional energy sources and their usage. EL Nino/LA Nino Southern oscillations. Causes for global warming: Deforestation, fossil fuel burning, industrialization. Manifestations of global warming: Sea level rise, melting	(13 hours)
Module 3:	Global Climate Change Green house effect and global warming, Enhancement in concentration of carbon dioxide and other green house gases in the atmosphere, Conventional and non-conventional energy sources and their usage. EL Nino/LA Nino Southern oscillations. Causes for global warming: Deforestation, fossil fuel burning, industrialization. Manifestations of global warming: Sea level rise, melting of glaciers, variation in monsoon patterns, increase in frequency and	(13 hours)
Module 3:	Global Climate Change Green house effect and global warming, Enhancement in concentration of carbon dioxide and other green house gases in the atmosphere, Conventional and non-conventional energy sources and their usage. EL Nino/LA Nino Southern oscillations. Causes for global warming: Deforestation, fossil fuel burning, industrialization. Manifestations of global warming: Sea level rise, melting of glaciers, variation in monsoon patterns, increase in frequency and intensity of cyclones, hurricanes, tornadoes.	(13 hours)
Module 3:	Global Climate Change Green house effect and global warming, Enhancement in concentration of carbon dioxide and other green house gases in the atmosphere, Conventional and non-conventional energy sources and their usage. EL Nino/LA Nino Southern oscillations. Causes for global warming: Deforestation, fossil fuel burning, industrialization. Manifestations of global warming: Sea level rise, melting of glaciers, variation in monsoon patterns, increase in frequency and intensity of cyclones, hurricanes, tornadoes. Geo-engineering as a tool to mitigate global warming? Schemes of geo-	(13 hours)
Module 3:	Global Climate Change Green house effect and global warming, Enhancement in concentration of carbon dioxide and other green house gases in the atmosphere, Conventional and non-conventional energy sources and their usage. EL Nino/LA Nino Southern oscillations. Causes for global warming: Deforestation, fossil fuel burning, industrialization. Manifestations of global warming: Sea level rise, melting of glaciers, variation in monsoon patterns, increase in frequency and intensity of cyclones, hurricanes, tornadoes. Geo-engineering as a tool to mitigate global warming? Schemes of geo- engineering.	(13 hours)
Module 3:	 Global Climate Change Green house effect and global warming, Enhancement in concentration of carbon dioxide and other green house gases in the atmosphere, Conventional and non-conventional energy sources and their usage. EL Nino/LA Nino Southern oscillations. Causes for global warming: Deforestation, fossil fuel burning, industrialization. Manifestations of global warming: Sea level rise, melting of glaciers, variation in monsoon patterns, increase in frequency and intensity of cyclones, hurricanes, tornadoes. Geo-engineering as a tool to mitigate global warming? Schemes of geo-engineering. Activities to be carried out on Climate Science: 	(13 hours)
Module 3:	 Global Climate Change Green house effect and global warming, Enhancement in concentration of carbon dioxide and other green house gases in the atmosphere, Conventional and non-conventional energy sources and their usage. EL Nino/LA Nino Southern oscillations. Causes for global warming: Deforestation, fossil fuel burning, industrialization. Manifestations of global warming: Sea level rise, melting of glaciers, variation in monsoon patterns, increase in frequency and intensity of cyclones, hurricanes, tornadoes. Geo-engineering as a tool to mitigate global warming? Schemes of geo-engineering. Activities to be carried out on Climate Science: Try to find answer to the following questions: 	(13 hours)
Module 3:	 Global Climate Change Green house effect and global warming, Enhancement in concentration of carbon dioxide and other green house gases in the atmosphere, Conventional and non-conventional energy sources and their usage. EL Nino/LA Nino Southern oscillations. Causes for global warming: Deforestation, fossil fuel burning, industrialization. Manifestations of global warming: Sea level rise, melting of glaciers, variation in monsoon patterns, increase in frequency and intensity of cyclones, hurricanes, tornadoes. Geo-engineering as a tool to mitigate global warming? Schemes of geo-engineering. Activities to be carried out on Climate Science: Try to find answer to the following questions: (a) Imagine you are going in a aircraft at an altitude greaten than 	(13 hours)
Module 3:	 Global Climate Change Green house effect and global warming, Enhancement in concentration of carbon dioxide and other green house gases in the atmosphere, Conventional and non-conventional energy sources and their usage. EL Nino/LA Nino Southern oscillations. Causes for global warming: Deforestation, fossil fuel burning, industrialization. Manifestations of global warming: Sea level rise, melting of glaciers, variation in monsoon patterns, increase in frequency and intensity of cyclones, hurricanes, tornadoes. Geo-engineering as a tool to mitigate global warming? Schemes of geo-engineering. Activities to be carried out on Climate Science: Try to find answer to the following questions: Imagine you are going in a aircraft at an altitude greaten than 100 km. The air temperature at that altitude will be greater than 	(13 hours)
Module 3:	 Global Climate Change Green house effect and global warming, Enhancement in concentration of carbon dioxide and other green house gases in the atmosphere, Conventional and non-conventional energy sources and their usage. EL Nino/LA Nino Southern oscillations. Causes for global warming: Deforestation, fossil fuel burning, industrialization. Manifestations of global warming: Sea level rise, melting of glaciers, variation in monsoon patterns, increase in frequency and intensity of cyclones, hurricanes, tornadoes. Geo-engineering as a tool to mitigate global warming? Schemes of geo-engineering. Activities to be carried out on Climate Science: Try to find answer to the following questions: Imagine you are going in a aircraft at an altitude greaten than 100 km. The air temperature at that altitude will be greater than 200°C. If you put your hands out of the window of the aircraft. 	(13 hours)
Module 3:	 Global Climate Change Green house effect and global warming, Enhancement in concentration of carbon dioxide and other green house gases in the atmosphere, Conventional and non-conventional energy sources and their usage. EL Nino/LA Nino Southern oscillations. Causes for global warming: Deforestation, fossil fuel burning, industrialization. Manifestations of global warming: Sea level rise, melting of glaciers, variation in monsoon patterns, increase in frequency and intensity of cyclones, hurricanes, tornadoes. Geo-engineering as a tool to mitigate global warming? Schemes of geo-engineering. Activities to be carried out on Climate Science: Try to find answer to the following questions: Imagine you are going in a aircraft at an altitude greaten than 100 km. The air temperature at that altitude will be greater than 200°C. If you put your hands out of the window of the aircraft, you will not feel hot. 	(13 hours)
Module 3:	 Global Climate Change Green house effect and global warming, Enhancement in concentration of carbon dioxide and other green house gases in the atmosphere, Conventional and non-conventional energy sources and their usage. EL Nino/LA Nino Southern oscillations. Causes for global warming: Deforestation, fossil fuel burning, industrialization. Manifestations of global warming: Sea level rise, melting of glaciers, variation in monsoon patterns, increase in frequency and intensity of cyclones, hurricanes, tornadoes. Geo-engineering as a tool to mitigate global warming? Schemes of geo-engineering. Activities to be carried out on Climate Science: Try to find answer to the following questions: Imagine you are going in a aircraft at an altitude greaten than 100 km. The air temperature at that altitude will be greater than 200°C. If you put your hands out of the window of the aircraft, you will not feel hot. 	(13 hours)
Module 3:	 Global Climate Change Green house effect and global warming, Enhancement in concentration of carbon dioxide and other green house gases in the atmosphere, Conventional and non-conventional energy sources and their usage. EL Nino/LA Nino Southern oscillations. Causes for global warming: Deforestation, fossil fuel burning, industrialization. Manifestations of global warming: Sea level rise, melting of glaciers, variation in monsoon patterns, increase in frequency and intensity of cyclones, hurricanes, tornadoes. Geo-engineering as a tool to mitigate global warming? Schemes of geo-engineering. Activities to be carried out on Climate Science: Try to find answer to the following questions: Imagine you are going in a aircraft at an altitude greaten than 100 km. The air temperature at that altitude will be greater than 200°C. If you put your hands out of the window of the aircraft, you will not feel hot. What would have happened if ozone is not present in the stratosphere. 	(13 hours)
Module 3:	 Global Climate Change Green house effect and global warming, Enhancement in concentration of carbon dioxide and other green house gases in the atmosphere, Conventional and non-conventional energy sources and their usage. EL Nino/LA Nino Southern oscillations. Causes for global warming: Deforestation, fossil fuel burning, industrialization. Manifestations of global warming: Sea level rise, melting of glaciers, variation in monsoon patterns, increase in frequency and intensity of cyclones, hurricanes, tornadoes. Geo-engineering as a tool to mitigate global warming? Schemes of geo-engineering. Activities to be carried out on Climate Science: Try to find answer to the following questions: Imagine you are going in a aircraft at an altitude greaten than 100 km. The air temperature at that altitude will be greater than 200°C. If you put your hands out of the window of the aircraft, you will not feel hot. What would have happened if ozone is not present in the stratosphere. 	(13 hours)
Module 3:	 Global Climate Change Green house effect and global warming, Enhancement in concentration of carbon dioxide and other green house gases in the atmosphere, Conventional and non-conventional energy sources and their usage. EL Nino/LA Nino Southern oscillations. Causes for global warming: Deforestation, fossil fuel burning, industrialization. Manifestations of global warming: Sea level rise, melting of glaciers, variation in monsoon patterns, increase in frequency and intensity of cyclones, hurricanes, tornadoes. Geo-engineering as a tool to mitigate global warming? Schemes of geo-engineering. Activities to be carried out on Climate Science: Try to find answer to the following questions: Imagine you are going in a aircraft at an altitude greaten than 100 km. The air temperature at that altitude will be greater than 200°C. If you put your hands out of the window of the aircraft, you will not feel hot. What would have happened if ozone is not present in the stratosphere. Visit a nearby weather Station and learn about their activities. Design your own rain gauge for rainfall measurement at your place. 	(13 hours)

4.	Learn to determine atmospheric humidity using wet bulb and dry	
	bulb thermometers.	
5.	Visit the website of Indian Institute of Tropical Meteorology	
	(IITM), and keep track of occurrence and land fall of cyclone prediction.	
6.	Learn about ozone layer and its depletion and ozone hole.	
7.	Keep track of melting of glaciers in the Arctic and Atlantic region	
	through data base available over several decades.	
8.	Watch documentary films on global warming and related issues	
	(produced by amateur film makers and promoted by British Council	
	and BBC).	
Refere	nces:	
1.	Basics of Atmospheric Science - A Chndrashekar, PHI Learning	
	Private Ltd. New Delhi, 2010.	
2.	Fundamentals of Atmospheric Modelling- Mark Z Jacbson,	
	Cambridge University Press, 2000.	

•

Astronomy

Time: 2 hrs./week + 01 Hr tutorial

	Content	Hrs	
Unit – 1 -History and Introduction			
Chapter 1	Ancient Astronomy Greek Observations, Sumerian Observations, Mayan Observations, Arabic Observations ,Chinese Observations	2	
Chapter 2	Indian Astronomy Vedic Astronomy, Ancient Astronomy – Aryabhata, Varahamihira, Bhaskara Astronomy in Indian Scriptures, Precession of the Equinox,Celebrations of Equinox	2	
Chapter 3	Medieval & Modern Astronomy Invention of Telescopes, Models of the Solar System & Universe, Observations by Tycho Brahe, Kepler, Galileo, Herschel and Other,Modern Astronomy	2	
Chapter 4	Optical tools for Astronomy Pin Hole, Binoculars, Telescopes & Imaging.	1	
Chapter 5	Mathematical Methods of Observations Angular Measurement, Trigonometric functions, Stellar Parallax	1	
Chapter 6	Observational Terminologies Cardinal Directions, Azimuth, Altitude, Measurements using Compass and Hand. Equatorial Co-ordinates, Light years, Magnitude, Colors etc.	2	
	Unit – 2: Unit 2: Observations of the Solar System		
Chapter 7.	The Sun	1	
	Ecliptic and the Orientation of the Earth, Seasons - Solstices and Equinox, Observations of the Sun from Earth during seasons. Eclipses, Zero-shadow day, Sunspots		
Chapter 8	The Moon Earth-Moon system – Phases, Lunar Eclipses, Ecliptic and Lunar Orbital Plane – Nodes, Lunar Month, Full Moon Names	1	
Chapter 9.	Inner Planets: Mercury & Venus Observational History, Observational Windows, Appearance, Apparitions, Elongations, Superior Conjunctions, Inferior Conjunctions, Transits.	2	
Chapter 10	Outer Planets Outer Planets: Mars, Jupiter & Saturn Observational History.Observational Windows, Appearance, Frequency of Oppositions Oppositions, Conjunctions, Moons Eclipses.Galilean Moons, Saturn's Rings	2	

Unit III Major Astronomy Observations		
Chapter 11	March to June Prominent Stars and Constellations Visible during this period, Methods of Spotting.	2
Chapter 12	June to September Prominent Stars and Constellations Visible during this period, Methods of Spotting.	2
Chapter 13	September to December Prominent Stars and Constellations Visible during this period, Methods of Spotting.	2
Chapter 14	December to March Pr ominent Stars and Constellations Visible during this period, Methods of Spotting.	2

Reference Books:

1. The Stargazer's Guide - How to Read Our Night Sky by Emily Winterburn

2. A guide to the Night Sky – Beginner's handbook by P.N. Shankar

3. The Complete Idiot's guide to Astronomy by Christopher De Pree and Alan Axelrod

Text Books

- 1. P. N. SHANKAR A GUIDE TO THE NIGHT SKY https://www.arvindguptatoys.com/arvindgupta/nightskyshankar.pdf
- 2. BimanBasu, Joy of Star Watching, National Book Trust of India 2013

References Books

Christopher De Pree : The Complete Idiot's Guide to Astronomy, Penguin USA, 2008

Emily Winterburn ,The Stargazer's Guide: How to Read Our Night Sky, Constable and Robinson, 2008

Activities

Sl No	Experiment
1	Measuring Seasons using Sun's Position.
2	Measuring Distance using Parallax
3	Estimation of the Stellar Diameter using Pin Hole
4	Measuring Height of an Object Using Clinometer.
5	Star spotting using constellation maps
6	Constellation spotting using Skymaps
7	Estimation of 'Suitable Periods' to observe deep sky objects using Planisphere.
8	Estimation of the Size of the Solar System in using Light Years.
9	Identification of Lunar Phases across a year.
10	Measuring Constellation of the Sun using Night Skymaps or Planispheres.

Medical Physics Time: 2 hrs./week + 01 Hr tutorial

		1
Unit I:	Human Anatomy and Physiology	(13
		hours)
	Overview of human anatomy - cells, cell structure, type of cells and their functions,	
	tissues, organs, and their functions. Different systems in the human body, their	
	structure and function, physiological properties of the circulatory system, digestive	
	system, respiratory system, reproductive system, excretory system, endocrine system	
	and nervous system	
Unit II:	Physics of Medical Diagnostics	(13
		hours)
	Principle of production of X-rays. Use of X-rays in medical diagnosis. X-ray imaging	
	systems Computed Tomography (CT): principle and generation of CT Magnetic	
	Pasananaa Imaging (MPI): basic principle and image characteristics. Ultrasound	
	Resonance imaging (MRI). basic principle and image characteristics. On asound	
	Imaging: Interaction of sound waves with body tissues, production of ultrasound,	
	transducers, acoustic coupling, image formation, modes of image display and color	
	Doppler.	
Unit III:	Physics of Radiotherapy	(13
		hours)
	Clinical aspects of radiation therapy: Biological basis of radiotherapy, radiation	
	sources, radiation dose, time dose fractionation. External beam radiation therapy,	
	radiation therapy modalities, production of radioisotopes, use of radioisotopes in	
	therapy, particle and ion beam radiotherapy. Brachytherapy - principle of	
	brachytherapy and classification of brachytherapy techniques	
	Class Room Activities	
	Class Room Activities	
	Unit I: Students can demonstrate the shape size positions and functions of different	
	or some in the body with the bala of models	
	organs in the body with the help of models.	
	Unit II: The use of X-rays in the diagnosis of the fractured bone can be demonstrated	
	with the help of a gamma source and a gamma ray survey meter. As the density of	
	materials between the source and the detector changes the reading on the meter (or	
	intensity of the beefing sound) changes.	
	Unit III: (i) Students can be asked to list out different type of cancers and possible	
	causative factors. They can be asked to list out the healthy practices to reduce the risk	
	of cancers.	
	(ii) As there will be students from different disciplines in the OE course, group	
	discussion can be arranged to discuss about their programme and outcome. This will	
	be an opportunity for the students to know about other disciplines	
	be an opportunity for the students to know about other disciplines.	
	Other related activities/projects:	
	1 Visit to nearby hospitals/diagnostic centers to study the working of X-ray machines	
	2. Visit to ultrasound diagnostic conters to study the principle and use of ultrasound in	
	2. Visit to una asound diagnostic centers to study the principle and use of ultrasound in	
	3. Project on principle and use of X-ray films in imaging.	
	4. Visit to radiotherapy centers to study the modalities of radiotherapy.	

Text Books

1. C. H. Best and N. B. Taylor. A Test in Applied Physiology. Williams and Wilkins Company, Baltimore, 1999.

2. C. K. Warrick. Anatomy and Physiology for Radiographers. Oxford University Press, 2001.

3. Jerrold T. Bushberg. The Essential Physics for Medical Imaging (2nd Edition). Lippincott Williams & Wilkins, 2002.

4. Jean A. Pope. Medical Physics: Imaging. Heinemann Publishers, 2012.

5. Faiz M. Khan and Roger A. Potish. Treatment Planning in Radiation Oncology. Williams and Wilkins, USA, 2003.

6. D. Baltas. The physics of modern brachytherapy for oncology. Taylor and Francis, 2007.

Reference Books

1. J. R. Brobek. Physiological Basis of Medical Practice. Williams and Wilkins, London, 1995.

2. Edward Alcamo, Barbara Krumhardt. Barron's Anatomy and Physiology the Easy Way. Barron's Educational Series, 2004.

3. Lippincott, Anatomy and Physiology. Lippincott Williams & Wilkins, 2002.

4. W. E. Arnould Taylor. A textbook of anatomy and physiology, Nelson Thornes, 1998.

5. G. S. Pant. Advances in Diagnositc Medical Physics. Himalaya Publishing House, 2006.

6. Sabbahaga, Diagnositc Ultrasound applied to OBG. Maryland, 1980.

7. Faiz M Khan. The Physics of Radiation Therapy (3rd edition). Lippincott Williams & Wilkins, USA, 2003.

8. Jatinder R. Palta and T. Rockwell Mackie. Intensity Modulation Radiation Therapy. Medical Physics publishing, Madison, Wisconsin, 2003.

9. AAPM Report No. 72. Basic Applications of Multileaf collimators, AAPM, USA, 2001.

10. AAPM Report No. 91. Management of Respiratory motion in radiation oncology, 2006.

11. CA Joslin, A. Flynn, E. J. hall. Principles and Practice of Brachytherapy. Arnold publications, 2001.

12. Peter Hoskin, Catherine Coyle. Radiotherapy in Practice. Oxford University Press, 2011.

13. W. R. Handee. Medical Radiation Physics. Year Book Medical Publishers Inc., London, 2003.

14. Donald T. Graham, Paul J. Cloke. Principles of Radiological Physics. Churchill Livingstone, 2003.

15. Thomas S. Curry. Christensen', s Physics of Diagnostic Radiology (4th Edition). Lippincott Williams & Wilkins, 1990.

16. Madison. MRI - Perry Sprawls - Medical Physics Publishing. Wisconsin, 2000.

17. Steve Webb. The Physics of Three–Dimensional Radiotherapy. Institute of Physics Publishing Bristol and Philadelphia 2002	
18. Radiation oncology physics: A Handbook for teachers and students. IAEA	
publications, 2005.	
19. F. M. Khan. The Physics of Radiation Therapy (3rd Edition), Lippincott Williams and Wilkins, U.S.A., 2003.	

•

OPTICAL INSTRUMENTS

Time: 2 hrs./week + 01 Hr tutorial Max Marks: Unit 1. Basics of Optics Scope of optics, optical path, laws of reflection and refraction as per Fermat's principle, magnifying glass, Lenses (thick and thin), convex and concave lenses, Lens makers formulae for double concave and convex lenses, lens equation. Focal and nodal points, focal length, image formation, combination of lenses, dispersion of light: Newton's experiment, angular dispersion and dispersion power. Dispersion without deviation. (Expressions need not be derived, but have to be discussed qualitatively). Unit 2. **Camera and microscopes** Human eye (constitution and working), Photographic camera (principle, construction and working), construction, working and utilities of Simple microscopes,

	Compound microscope,	
	Electron microscopes,	
	Binocular microscopes	
	Self study	
	Experimental determination of magnifying power of a microscope.	
	(Construction part can be discussed through block diagrams)	
Unit 3.	Telescopes and Spectrometer	13
	Construction, working and utilities of	
	Astronomical telescopes	
	Terrestrial telescopes	
	Reflecting telescopes,	
	Construction, working and utilities of Eyepieces or Oculars (Huygen, Ramsden's,	
	Gauss)	
	Spectrometer - Construction, working and utilities, measurement of refractive index.	
	Self study	
	Telescopes used at different observatories in and outside India.	
	Activities: Find position and size of the image in a magnifying glass and magnification	n.
	Observe rain bows and understand optics.	
	Create a rainbow.	
	Find out what makes a camera to be of good quality.	
	Observe the dispersion of light through prism.	
	Make a simple telescope using magnifying glass and lenses.	
	Learn principle of refraction using prisms.	
	Check bending of light in different substances and find out what matters here.	
	Learn about different telescopes used to see galaxies and their ranges.	
	Many more activities can be tried to learn optics by going through you tubes and webis	stes such
	as https://spark.iop.org, http://www.yenka.com, https://publiclab.org etc.	

13

14

Sports Science

Time: 2 hrs./week + 01 Hr tutorial

Content (Use maths of 10 th Std only – Only qualitative discussion)			
Unit - 1			
Chapter No. 1	Measurement : Physical quantities. Standards and Units. International system of Units. Standards of time, length and mass. Precision and significant figures.	04	
Chapter No. 2	Newton's laws of motion : Newton's first law. Force, mass. Newton's second law. Newton's third law. Mass and weight. Applications of Newton's laws.	03	
Chapter No. 3	Projectile motion : Shooting a falling target. Physics behind Shooting, Javelin throw and Discus throw.	03	
Topics for self study (If any)	https://www.real-world-physics-problems.com/physics-of-sports.html		
Unit - 2			
Chapter No. 4.	Conservation laws : Conservation of linear momentum, collisions – elastic and inelastic. Angular momentum. (Physics behind Carom, Billiards, Racing)	04	
Chapter No. 5.	Centre of mass: Physics behind Cycling, rock climbing, Skating,	02	
Chapter No. 6.	Gravitation : Origin, Newton's law of gravitation. Archimedes's principle, Buoyancy (Physics behind swimming)	04	
Topics for self study (If any)	If Archimedes' Principle: Made EASY Physics in You tube		
Unit - 3			
Chapter No.7	Food and Nutrition: Proteins, Vitamins, Fat, Blood pressure. Problems due to the deficiency of vitamins.	04	
Chapter No. 8	Energy: Different forms of Energy, Conservation of mass-energy.	03	
Chapter No . 9	Physical exercises: Walking, Jogging and Running, Weight management.	03	
Topics for self study (If any)	<u> 10 Best Exercises for Everyone – Healthline</u>		
	Suggested Activities		
Activity No. 1	Identify the methods of measurement of time, length and mass from ancient time and build models for them.	02	
	Reference : <u>History of measurement - Wikipedia</u> https://en.wikipedia.org > wiki > History_of_measurem		

Activity No. 2	Identify Physics principles behind various Sports activities.		
	https://www.real-world-physics-problems.com/physics-of-sports.html		
Activity No. 3	List the difficulties experienced in Gymnastics, Cycling and weight lifting.	02	
Activity No. 4	List the difficulties experienced in swimming.	01	
Activity No. 3	List the difficulties experienced in Gymnastics, Cycling and weight lifting.	02	
Activity No. 4	List the difficulties experienced in swimming.	01	
	Learn breathing exercises.		
Activity No. 5	Reference : 1) <u>Simple Breathing Exercise for Beginners Swami Ramdev</u> 2) https://www.yogajournal.com	02	
Activity No.6	Write an essay on Physical health v/s Mental health or conduct a debate on Physical health v/s Mental health.	01	

Text Books

Sl No	Title of the Book	Authors Name	Publisher	Year of
				Publication
1	Physics for Entertainment	Yakov Perelman	Createspace	
			Independent Pub.	
2	Physics Everywhere	Yakov Perelman	Prodinnova	2014
3	Mechanics for	Yakov Perelman	Prodinnova	2014
	Entertainment			
4	Handbook of Food and	M.Swaminathan	Bangalore Press	2012
	Nutrition		2012	
5	Food Science	B. Srilakshmi	New Age	2015
			International Pub	

References Books

Sl No	Title of the Book	Authors Name	Publisher	Year of					
				Publication					
1	Physics	Resnick, Halliday	Wiley Student						
		and Krane, Vol 1	Edition.						
2	For the love of Physics	Walter Lewin	Taxmann	2012					
			Publications Private						
			Limited						
3	An Introduction to the	VassiliosMcInnesS	CreateSpace	2013					
	Physics of Sports	pathopoulos	Independent						
	Publishing Platform								
Internet	Internet resources								
https://y	https://www.topendsports.com/biomechanics/physics.htm								
https://v	www.real-world-physics-pro	blems.com/physics-of	<u>-sports.html</u>						

https://www.healthline.com/ https://www.mayoclinic.org/ https://www.who.int/news-room/

NANOTECHNOLOGY

Time: 2 hrs./week + 01 Hr tutorial

Unit 1:	Introduction to nanomaterials	
	Length scales in physics, Nanostructures: 1D, 2D and 3Dnanostructures (nano dots, thin films, nanowires, nanorods), Band structure and density of states of materials at nanoscale, Size Effects in nano systems, Quantum confinement: Applications of Schrodinger equationInfinite potential well, potential step, potential box, quantum confinement of carriers in 3D,2D, 1D nanostructures and its consequences.	(13hours)
Unit 2:	Synthesis and Characterization of nanostructure materials	
	Top down and Bottom up approach, Photolithography. Ball milling. Gas phase condensation.Vacuum deposition. Physical vapor deposition (PVD): Thermal evaporation, E-beamevaporation, Pulsed Laser deposition. Chemical vapor deposition (CVD). Sol-Gel. Electrodeposition. Spray pyrolysis. Hydrothermal synthesis. Preparation through colloidal methods.MBE growth of quantum dots. X-Ray Diffraction. Optical Microscopy. Scanning ElectronMicroscopy. Transmission Electron Microscopy. Atomic Force Microscopy. ScanningTunneling Microscopy.	(13 hours)
Unit 3:	Properties and applications of nanomaterials	
	Coulomb interaction in nanostructures. Concept of dielectric constant for nanostructures andcharging of nanostructure. Quasi-particles and excitons. Excitons in direct and indirect bandgap semiconductor nanocrystals. Quantitative treatment of quasiparticles and excitons, charging effects. Radiative processes: General formalization-absorption, emission andluminescence. Optical properties of heterostrctures and nanostructures. Applications ofnanoparticles, quantum dots, nanowires and thin films for photonic devices (LED, solarcells). Nanomaterial Devices: Quantum dots heterostructure lasers, optical switching andoptical data storage. Magnetic quantum well; magnetic dots - magnetic data storage.	(13 hours)
Referen	ces Books:	
 C.P. Pot S.K. Kit K.K. Technolog Richard M. Hothandbook Introdu 2011,Cam Bharat 2004). 	 bole, Jr. Frank J. Owens, Introduction to Nanotechnology (Wiley India Pvt. Ltd.). ulkarni, Nanotechnology: Principles & Practices (Capital Publishing Company) Chattopadhyay and A. N. Banerjee, Introduction to Nanoscience and gy(PHI Learning Private Limited). d Booker, Earl Boysen, Nanotechnology (John Wiley and Sons). bosokawa, K. Nogi, M. Naita, T. Yokoyama, Nanoparticle Technology (Elsevier, 2007). uction to Nanoelectronics, V.V. Mitin, V.A. Kochelap and M.A. Stroscio, bridge University Press. Bhushan, Springer Handbook of Nanotechnology (Springer-Verlag, Berlin, 	

Student Activities:

- 1. Synthesis of metal nanoparticles by chemical route.
- 2. Synthesis of semiconductor nanoparticles.
- 3. XRD pattern of nanomaterials and estimation of particle size.
- 4. To study the effect of size on color of nanomaterials.
- 5. Growth of quantum dots by thermal evaporation.

6. Prepare a disc of ceramic of a compound using ball milling, pressing and sintering, and study its XRD.

7. Fabricate a thin film of nanoparticles by spin coating (or chemical route) and study transmittance spectra in UV-Visible region.

8. Prepare a thin film capacitor and measure capacitance as a function of temperature or frequency.

9. Visit to nearby research labs to study the working of XRD, SEM, UV-Visible

Spectrophotometer instruments

10. Visit to nearby research labs for project work and interaction with scientists at IISC, JNCSR, Universities etc.

ELECTRICAL INSTRUMENTS

Time: 2 hrs./week + 01 Hr tutorial

	Content	Hrs
	Unit - 1	
Chapter No. 1	Voltage and current sources, Kirchoff's current and voltage laws, loop and nodal analysis of simple circuits with dc excitation. Ammeters,voltmeters: (DC/AC)	03
Chapter No. 2	Representation of sinusoidal waveforms, peak and rms values, power factor. Analysis of single-phase series and parallel R-L-C ac circuits. Three-phase balanced circuits, voltage and current relations in star and delta connections. Wattmeters: Induction type, single phase and three phase wattmeter, Energy meters: AC. Induction type single phase and three phase energy meter	05
Chapter No. 3	Instrument Transformers: Potential and current transformers, ratio and phase angle errors, phasor diagram, methods of minimizing errors; testing and applications.	05
Topics for self study (If any)	Types of switches and Circuits, Safety precautions and rules in handling electrical appliances, Electric shock, first aid for electrical shocks, Fuses, MCB, ELCB and Relays, Filament lamp, Tube light, CFL and LED	
	Suggested Activities	
Activity	Identify variety of electrical switches and note down their applications/utility.	
No. 1	Reference: Weblink/Youtube/Book	
Activity	Identify the hazards involved in handling electrical circuits and instruments, make a list of safety precautions as well as first aid for electrical shocks.	
NO. 2	Reference : Weblink/Youtube/Book	
	Unit - 2	
Chapter No. 4.	Galvanometers: General principle and performance equations of D'ArsonvalGalvanometers, Vibration Galva nometer and Ballistic Galvanometer.	03
Chapter No. 5.	Potentiometers: DCPotentiometer, Crompton potentio meter, construction, standardization, application. AC Potentio meter, Drysdalepolar potentio meter; standardization, application.	03
Chapter No. 6.	DC/AC Bridges: General equations for bridge balance, measurement of self inductance by Maxwell's bridge (with variable inductance & variable capacitance), Hay's bridge, Owen's bridge, measurement of capacitance by Schearing bridge, errors, Wagner's earthing device, Kelvin's double bridge.	07
Topics for self study (If any)	Importance of grounding and <u>Earthing</u> , Methods for <u>Earthing</u> ,	

	Suggested Activities				
Activity	Make a study of importance of grounding in electrical circuits.				
No. 3	Reference : Weblink/Youtube/Book				
Activity	Prepare a detailed account of various methods of earthing and their utility/applications				
No. 4	Reference : Weblink/Youtube/Book				
	Unit - 3				
Chapter No.7	er Transducer: Strain Gauges, Thermistors, Thermocouples, Linear Variable Differential Transformer (LVDT), Capacitive Transducers, Peizo-Electric transducers, Optical Transducer, Hall Effect Transducer				
Chapter No. 8	 cRO: Block diagram, Sweep generation, vertical amplifiers, use of CRO in measurement of frequency, phase, Amplitude and rise time of a pulse. Digital Multi-meter: Block diagram, principle of operation 				
Chapter No. 9	r Basics of lead acid batteries, Lithium Ion Battery, Battery storage capacity, Coulomb efficiency, Numerical of high and low charging rates, Battery sizing.				
Topics for self study (If any)	Fuses, MCB, ELCB and Relays, Filament lamp, Tube light, CFL and LED				
	Suggested Activities				
Activity	Prepare a document on evolution of incandescent bulbs to the present day LED lights				
INO. 5	Reference : Weblink/Youtube/Book				
Activity	Make a comparative study of Fuses, MCB, ELCB and Relays highlighting their use and applications				
110.0	Reference : Weblink/Youtube/Book				

Text Books

AK.Sawhney, ACourse inElec.&Electronics Measurements&Instrumentation ,**Dhanpatrai& Co. 1978** A.D. Helfrick& W.D. Cooper, Modern Electronic Instrumentation and Measurement Techniques **PHI,2016**

References Books

- 1. D C Kulshreshtha, Basic Electrical Engineering, Mc Graw Hill Publications, 2019
- 2. David G Alciatore and Michel B Histand, Introduction to Mechatronics and Measurement Systems, 3rd, Tata McGraw Hill Education Private Limited, New Delhi., 2005
- 3. Vincent Del Toro, Electrical Engineering Fundamentals Prentice Hall India2009

Sl No	Experiment
1	Introduction to Lab Equipment
2	Voltmeter Design
3	Ammeter Design
4	Ohmmeter Design
5	Multimeter Design
6	Measurement of Resistance using Wheatstone Bridge
7	Measurement of Capacitance using Schering Bridge
8	Measurement of Inductance using Maxwell Bridge
9	Measurement of Light Intensity
10	Measurement of Temperature
	Reference Book for Laboratory Experiments
	AK.Sawhney ACourse inElec.&Electronics Measurements&Instrumentation:
	Helfrick& Cooper, Modern Electronic Instrumentation and Measurement Techniques:

List of Experiments to be performed in the Laboratory

PHYSICS FOR ALL

Time: 2 hrs./week + 01 Hr tutorial

Unit I	Energy and Power	(13 Hours)			
	Explosions and energy; Energy, heat and its units; Energy table and				
	discussions; Discussion of cost of energy; Measuring energy; Power;				
	Different power sources; Kinetic energy.				
Unit II	Gravity, Force and Space	(13 Hours)			
	The force of Gravity; Newton's third law; Weightlessness; Low earth orbit;				
	Geosynchronous satellites; Spy satellites; Medium Earth Orbit satellite;				
	Circular Acceleration; momentum; Rockets; Airplanes, helicopters and fans;				
	Hot air and helium balloons; angular momentum and torque.				
Unit III	Nuclei and radioactivity	(13 Hours)			
	Radioactivity; Elements and isotopes; Radiation and rays; Seeing radiation;				
	The REM - The radiation poisoning; Radiation and cancer; The linear				
	hypothesis; Different types of radiation; The half-life rule; Smoke detectors;				
	measuring age from radioactivity; Environmental radioactivity; Glow of				
	radioactivity; Nuclear fusion.				
Unit IV	Climate change	(13 Hours)			
	Global warming; IPCC; A brief history of climate; carbon dioxide; The				
	greenhouse effect; Enhancement of Greenhouse effect; Hurricane and				
	tornadoes; Antarctica; Fluctuations; Paleoclimate; Global warming vs Human				
	caused global warming; Can we stop global warming?, Fossil Fuel Resources;				
	Energy security; Energy efficiency and conservation; Bio-fuels; Nuclear, Wind				
	and Solar power.				
	References				
	This course is extracted from the book titled "Physics and Technology for				
	Future Presidents: An Introduction to the Essential Physics Every World				
	Leader Needs to Know" by Richard A Muller, WW Norton and Company,				
	2007. (Unit-1 to 4 are from chapters 1, 3, 4 and 10, respectively).				

SPACE MISSIONS

Time	e: 2 hrs./week + 01 Hr tutorial Max M	larks:				
Unit 1:	Introduction to Space Missions :	13 Hours				
	Rockets, types and their applications, Different types of orbits, Artificial satellites – basic idea and their applications, Introduction to Space Missions, Beginning of Space Missions - World and India, Applications of Space Research, Space crafts, Launching Vehicles.					
Unit 2:	National Aeronautics and Space Administration (NASA)	13 Hours				
	About NASA and its Goals, History of Creation. Foundational human spaceflight: X-15 program (1954–1968), Project Mercury (1958–1963), Project Gemini (1961–1966), Project Apollo (1960–1972), Skylab (1965–1979), Apollo-Soyuz (1972–1975).					
	Modern human spaceflight programs: Space Shuttle program (1972–2011), International Space Station (1993–present), Constellation program (2005–2010), Commercial Crew Program (2011–present), Journey to Mars (2010–2017), Artemis program (2017–present).					
Unit 3:	Indian Space Research Organisation (ISRO)	13 Hours				
	About ISRO and its Goals, History of Creation. General Satellite Programmes: The IRS series, The INSAT series. Gagan Satellite Navigation System, Navigation with Indian Constellation (NavIC), Other satellites.					
	Launch vehicles: Satellite Launch Vehicle (SLV), Augmented Satellite Launch Vehicle (ASLV), Polar Satellite Launch Vehicle (PSLV), Geosynchronous Satellite Launch Vehicle (GSLV). Experimental Satellites: Details and applications (Any Five) Earth Observation Satellites: Details and applications (Any Five) Communication satellites: Details and applications (Any Five)					
	Self Study:					
	Major Space Centres in the World (at least 10) – brief idea about their location, establishment, capabilities and achievements. People behind space programs – at least 2 from India. Successful Missions (Any Five).					
	Activities*:					
	 Design of working model of Rocket launching. Preparation of report and presentation on application of satellites in agriculture, communication, weather forecasting, exploration of natural resources and Global positioning system (GPS). 					
	* Faculty may suggest any other relevant activity as well. Preparation of report and presentation onApollo 11: A Success story					

Activities:	
 Preparation of report and presentation on the recent space missions of NASA. Preparation of report on any one proposed space programmeof NASA. 	
* Faculty may suggest any other relevant activity as well. Chandrayaan 1: Details and applications. Mars Orbiter Mission: Details and applications	
Activities:	
 Preparation of report and presentation on the recent space missions of ISRO. Preparation of report and presentation on any one proposed space programmeof ISRO. 	
• Preparation of report and presentation on the contributions of Scientists from Karnataka to Indian Space Program and use of space technology in the local district.	
* Faculty may suggest any other relevant activity as well.	

Activity Based Pedagogy:

(Design, Activity and Assessment)

Conducting activity based teaching-leaning experience for students empower students with several graduate attributes by addressing several Outcomes at different levels of the Cognitive Blooms Taxanomy of Learning: like Clarity of Concept, ability to apply knowledge, evaluate and analyse the results, while they are also learn through the Affective and Psycho-motor domains of Learning through self-learning, group dynamics and team work, communication and presentation skills, ethics, life-long learning, etc. These experiments must be ones that do not involve sophisticated instrumentation and should be able to be performed outside laboratories.

Example 1: Elastic Properties of Solids:

The most important concept of studying elastic properties of solids is the Hooke's Law, which defines the stress-strain relationship.

Class 1: Defining problems, forming groups and giving instructions:

- The students should be made into forced groups of 6 to 8 members, depending on the class strength, consisting of diverse kinds of students in cognition, cultural, sex, behaviour, etc.
- Different materials of varying elastic properties should be given to each group, and should be asked to plot a graph of stress-strain of these materials in 8-10 days.
- Give clear instructions and clarify doubts, but not giving the procedure for the experiments. Students should discuss among themselves and consult books and internet to identify the procedure to obtain the Stress-strain graph. They should use only house-hold items or other commonly available tools to perform all the experiments.

Class 2: Presentation and discussion by students (max 8-10 mins each)

- Each group will be asked to make a presentation of 2 power point slides, where the first one explains the process they went through to arrive at the results and the second one shows their measured graph and an ideal text book plots. This slide should also contain two or three explanations of why both the plots differ.
- The student who will make the presentation on behalf of the group will be randomly selected just before the presentations. This will ensure that all group members will be mutually train each other for the presentation.
- > The teacher should give equal marks to each member of a group depending on the methods adopted and clarity of concepts and results obtained and ability to analyse.

The following Program Outcomes will be attained by the students in such an activity based learning:

P.O. 1 : Discipline Knowledge: Knowledge of science and ability to apply to relevant areas.

P.O. 3 : Modern tool usage: Use a modern scientific, engineering and IT tool or technique for solving problems in the areas of their discipline.

P.O. 5 : Individual and teamwork: Work effectively as an individual as a team member in a multidisciplinary team.

P.O. 6: Communication: Communicate effectively with the stake holders, and give and receive clear instructions.

Example 2: Periodic and Non-Periodic Motions

Most important aspect of understanding this topic is to distinguish them with the amplitude versus distance and amplitude versus time plots.

Class 1: Defining problems and giving instructions

- Each student will be asked to list as many observations as possible, under the two types of motion as they observe in the external world (home, market, college, etc) in 8-10 days.
- The student will be asked to identify any one motion in each of the lists and plot graphs of amplitude versus distance and amplitude versus time for each of them in the 8-10 days.

Class 2: Peer evaluation by students and defending self

- Each student is asked to submit the lists of periodic and non-periodic motions observed in everyday life.
- Each student is also asked to submit the amplitude versus distance and amplitude versus time of one periodic motion and one non-periodic motion of his/her choice among his/her list.
- > The submissions are randomly distributed among other students. Teacher now discusses the two types of motions in the lists of students and shows how the graphs will ideally look like.
- Now students are asked to evaluate and mark the submissions of other students they have with them and then the marked papers are returned to the respective students.
- Each student should be given an opportunity to question the marks he has got and each student who has given the marks should be able to defend his choice or marks.
- While observing the lists, marks obtained and the plots made, the teacher can assign marks to each student.

The following Program Outcomes will be attained by the students in such an activity based learning:

P.O. 1. Discipline Knowledge: Knowledge of science and ability to apply to relevant areas.

P.O. 4. Ethics: Apply the professional ethics and norms in respective discipline.

P.O. 6. Communication: Communicate effectively with the stake holders, and give and receiveclear instructions.

Government of Karnataka Curriculum Framework for Undergraduate in Colleges and Universities of Karnataka State.

V & VI Semester Model Syllabus For BSc. In Physics

Submitted to

Vice Chairman Karnataka State Higher Education Council Bengaluru, Karnataka – 560009

Model Physics Syllabus Multi-Disciplinary Programme as per UNIVERSITY-2020

Expert Committee Members:

Prof. S.M. Shivaprasad (Chairman)	Director, KS-Higher Education Academy, Dharwad
Prof. Ramakrishna Damle	Bangalore , Bengaluru.
Prof. T. Sankarappa	Gulbarga , Kalaburgi
Prof. Nagabhushana H.	Tumkur , Tumakuru.
Prof. Thipperudrappa J.	VSK , Ballari
Prof. B. G. Hegde,	Rani Channamma , Belagavi.
Shri Rohini Kumar Hilli,	MSI Degree College, Kalaburgi
Dr. M. Narayana Bhat	St. Aloysius College, Mangalore.
Dr. Tejaswini Y,	Karnataka State Higher Education Council

BOS Members as invitees

Dr. M.N. Kalasad,	Davangere , Davangere
Dr. B. Eraiah	Bangalore , Bangalore
Dr. Sriprakash	Maharani Cluster
Prof. B. R. Kerur	Gulbarga , Kalaburg

ModelCurr iculum of BSc inPhysics 5th& 6th Semester

Karnataka State Higher Education Council

60 | Page

PROPOSED COURSE FRAME WORK IN PHYSICS AS PER HIGHER EDUCATION COUNCIL GUIDELINES (for TwoMajor)

Sem.	Course Cours Category Code	Course	Course	Course	Course	Course	Course		Credits	Instructi per	onal Hours week	Duration	I	Marks	
No.		Code	Course little	Assigned	Theory	Practical	(Hrs.)	IA	Exam	Total					
	DSC	РНҮ С9-Т	Classical Mechanics - I and Quantum Mechanics-I	04	04		02	40	60	100					
		PHY C10-P	Classical Mechanics -I and Quantum Mechanics-I Practical	02	-	04	03	25	25	50					
		PHY C11-T	Elements of Atomic, Molecular and Laser Physics	04	04		02	40	60	100					
	IVIAJOR	PHY C12-P	Elements of Atomic, Molecular and Laser Physics Practical	02	-	04	03	25	25	50					
V	DSC	Х9-Т		04	04		02	40	60	100					
	SECOND	X10-P		02	-	04	03	25	25	50					
	SECOND	X11-T		04	04		02	40	60	100					
	MAJOR	X12-P		02	-	04	03	25	25	50					
	SEC		Employability skills or Cyber Security	03	02	02		25	25	50					
			Total	27				285	365	650					
	DSC PHYSICS	PHY C13-T	Elements of Condensed Matter & Nuclear Physics	04	04		02	40	60	100					
		PHY C14-P	Elements of Condensed Matter & Nuclear Physics Practical	02	-	04	03	25	25	50					
		PHY C15-T	Electronic Instrumentation & Sensors	04	04		02	40	60	100					
	WAJUK	PHY C16-P	Electronic Instrumentation & Sensors Practical	02	-	04	03	25	25	50					
	DSC	X13-T		04	04		02	40	60	100					
VI		X14-P		02	-	04	03	25	25	50					
	MAJOR	X15-T		04	04		02	40	60	100					
		X16-P		02	-	04	03	25	25	50					
	Internship	INTERNSHIP	Internship	02		04		50		50					
			Total	26				310	340	650					

Government of Karnataka

Model Curriculum

Program Name	BSc in Physics		Semester	V
Course Title Classical Mechanics and Quantum			Mechanics-I <mark>(Theory)</mark>	
Course Code PHY C9-T		No. of Credits	04	
Contact Hours	60 Hours		Duration of SEA/Exam	02 Hours
Formative Assessment Marks 40			Summative Assessment Marks	60

Course Pre-requisite(s):

Course Outcomes (COs): After the successful completion of the course, the student will be able to

- Identify the failure of classical physics at the microscopic level.
- Find the relationship between the normalization of a wave function and the ability to correctly calculate expectation values or probability densities.
- Explain the minimum uncertainty of measuring both observables on any quantum state.
- Describe the time-dependent and time-independent Schrödinger equation for simplepotentials like for instance one-dimensional potential well and Harmonic oscillator.
- Apply Hermitian operators, their eigenvalues and eigenvectors to find various commutation and uncertainty relations.

Contents	60 Hrs
Introduction to Newtonian Mechanics: Frames of references, Newton's laws of motion,	15
inertial and non-inertial frames. Mechanics of a particle, Conservation of linear momentum,	
Angular momentum and torque, conservation of angular momentum, work done by a force,	
conservative force and conservative energy.	
Lagrangian formulation: Constraints, Holonomic constraints, non-holonomic constraints,	
Scleronomic and Rheonomic constraints. Generalized coordinates, degrees of freedom,	
Principle of virtual work, D'Alembert's principle, Lagrange equations. Newton's equation of	
motion from Lagrange equations, simple pendulum, Atwood's machine and linear harmonic	
oscillator.	
12 Hours	
Activities: 03 Hours	
Variational principle: Hamilton's principle, Deduction of Hamilton's principle, Lagrange's	15
equation of motion from Hamilton's principle, Hamilton's principle for non-holonomic	
systems.	
Hamiltonian Mechanics: The Hamiltonian of a system, Hamilton's equations of motion,	

Hamilton's equations from variational principle, Integrals of Hamilton's equations, energy	
integrals, Canonical Transformations, Poison Brackets, fundamental properties and equations	
of motion in Poison Brackets. 12Hours	
Activities: 03 Hours	
Introduction to Quantum Mechanics	15
Brief discussion on failure of classical physics to explain black body radiation, Photoelectric	
effect, Compton effect, stability of atoms and spectra of atoms.	
Matter wayes: de Broglie bypothesis of matter wayes. Electron microscope, Waye description	
of narticles by wave nackets. Group and Phase velocities and relation between them	
Experimental evidence for matter waves: Davisson- Germer experiment, G.P. Thomson's	
experiment and its significance.	
Heisenberg uncertainty principle: Elementary proof of Heisenberg's relation between	
momentum and position, energy and time, angular momentum and angular position,	
illustration of uncertainty principle by Gamma ray microscope thought experiment.	
Consequences of the uncertainty relations: Diffraction of electrons at a single slit, why	
electron cannot exist in nucleus?	
Two-slit experiment with photons and electrons. Linear superposition principle as a	
consequence.	
12 Hours	
12 Hours Activities: 03 Hours	
12 Hours Activities: 03 Hours Foundation of Quantum Mechanics	15
12 Hours Activities: 03 Hours Foundation of Quantum Mechanics Probabilistic interpretation of the wave function - normalization and orthogonality of wave	15
12 Hours Activities: 03 Hours Foundation of Quantum Mechanics Probabilistic interpretation of the wave function - normalization and orthogonality of wave functions, Admissibility conditions on a wave function, Schrödinger equation: equation of	15
12 Hours Activities: 03 Hours Foundation of Quantum Mechanics Probabilistic interpretation of the wave function - normalization and orthogonality of wave functions, Admissibility conditions on a wave function, Schrödinger equation: equation of motion of matter waves - Schrödinger wave equation for a free particle in one and three-	15
12 Hours Activities: 03 Hours Foundation of Quantum Mechanics Probabilistic interpretation of the wave function - normalization and orthogonality of wave functions, Admissibility conditions on a wave function, Schrödinger equation: equation of motion of matter waves - Schrodinger wave equation for a free particle in one and three-dimension, time-dependent and time-independent wave equations, Probability current	15
12 Hours Activities: 03 Hours Foundation of Quantum Mechanics Probabilistic interpretation of the wave function - normalization and orthogonality of wave functions, Admissibility conditions on a wave function, Schrödinger equation: equation of motion of matter waves - Schrodinger wave equation for a free particle in one and three- dimension, time-dependent and time-independent wave equations, Probability current density, equation of continuity and its physical significance, Postulates of Quantum mechanicae. States are normalized wavefunctions.	15
12 Hours Activities: 03 Hours Foundation of Quantum Mechanics Probabilistic interpretation of the wave function - normalization and orthogonality of wave functions, Admissibility conditions on a wave function, Schrödinger equation: equation of motion of matter waves - Schrodinger wave equation for a free particle in one and three- dimension, time-dependent and time-independent wave equations, Probability current density, equation of continuity and its physical significance, Postulates of Quantum mechanics: States as normalized wavefunctions. Dynamical variables as linear Hormitian operators (position momentum angular momentum and energy as examples)	15
12 Hours Activities: 03 Hours Foundation of Quantum Mechanics Probabilistic interpretation of the wave function - normalization and orthogonality of wave functions, Admissibility conditions on a wave function, Schrödinger equation: equation of motion of matter waves - Schrodinger wave equation for a free particle in one and three- dimension, time-dependent and time-independent wave equations, Probability current density, equation of continuity and its physical significance, Postulates of Quantum mechanics: States as normalized wavefunctions. Dynamical variables as linear Hermitian operators (position, momentum, angular momentum, and energy as examples). Expectation values of operators and their time evolution Ebrenfest theorem (no derivation)	15
12 Hours Activities: 03 Hours Foundation of Quantum Mechanics Probabilistic interpretation of the wave function - normalization and orthogonality of wave functions, Admissibility conditions on a wave function, Schrödinger equation: equation of motion of matter waves - Schrodinger wave equation for a free particle in one and three- dimension, time-dependent and time-independent wave equations, Probability current density, equation of continuity and its physical significance, Postulates of Quantum mechanics: States as normalized wavefunctions. Dynamical variables as linear Hermitian operators (position, momentum, angular momentum, and energy as examples). Expectation values of operators and their time evolution. Ehrenfest theorem (no derivation), Commutator brackets- Simultaneous Eigen functions, Commutator bracket using position,	15
12 HoursActivities:03 HoursFoundation of Quantum MechanicsProbabilistic interpretation of the wave function - normalization and orthogonality of wave functions, Admissibility conditions on a wave function, Schrödinger equation: equation of motion of matter waves - Schrodinger wave equation for a free particle in one and three- dimension, time-dependent and time-independent wave equations, Probability current density, equation of continuity and its physical significance, Postulates of Quantum mechanics: States as normalized wavefunctions. Dynamical variables as linear Hermitian operators (position, momentum, angular momentum, and energy as examples). Expectation values of operators and their time evolution. Ehrenfest theorem (no derivation), Commutator brackets- Simultaneous Eigen functions, Commutator bracket using position, momentum and angular momentum operators.	15
12 HoursActivities:03 HoursFoundation of Quantum MechanicsProbabilistic interpretation of the wave function - normalization and orthogonality of wave functions, Admissibility conditions on a wave function, Schrödinger equation: equation of motion of matter waves - Schrodinger wave equation for a free particle in one and three- dimension, time-dependent and time-independent wave equations, Probability current density, equation of continuity and its physical significance, Postulates of Quantum mechanics: States as normalized wavefunctions. Dynamical variables as linear Hermitian operators (position, momentum, angular momentum, and energy as examples). Expectation values of operators and their time evolution. Ehrenfest theorem (no derivation), Commutator brackets- Simultaneous Eigen functions, Commutator bracket using position, momentum and angular momentum operators. Particle in a one-dimensional infinite potential well (derivation), degeneracy in three-	15
12 HoursO3 HoursActivities:03 HoursFoundation of Quantum MechanicsProbabilistic interpretation of the wave function - normalization and orthogonality of wave functions, Admissibility conditions on a wave function, Schrödinger equation: equation of motion of matter waves - Schrodinger wave equation for a free particle in one and three- dimension, time-dependent and time-independent wave equations, Probability current density, equation of continuity and its physical significance, Postulates of Quantum mechanics: States as normalized wavefunctions. Dynamical variables as linear Hermitian operators (position, momentum, angular momentum, and energy as examples). Expectation values of operators and their time evolution. Ehrenfest theorem (no derivation), Commutator brackets- Simultaneous Eigen functions, Commutator bracket using position, momentum and angular momentum operators. Particle in a one-dimensional infinite potential well (derivation), degeneracy in three- dimensional case, particle in a finite potential well (qualitative), Transmission across a potential	15
12 Hours Activities: 03 Hours Foundation of Quantum Mechanics Probabilistic interpretation of the wave function - normalization and orthogonality of wave functions, Admissibility conditions on a wave function, Schrödinger equation: equation of motion of matter waves - Schrodinger wave equation for a free particle in one and three- dimension, time-dependent and time-independent wave equations, Probability current density, equation of continuity and its physical significance, Postulates of Quantum mechanics: States as normalized wavefunctions. Dynamical variables as linear Hermitian operators (position, momentum, angular momentum, and energy as examples). Expectation values of operators and their time evolution. Ehrenfest theorem (no derivation), Commutator brackets- Simultaneous Eigen functions, Commutator bracket using position, momentum and angular momentum operators. Particle in a one-dimensional infinite potential well (derivation), degeneracy in three- dimensional case, particle in a finite potential well (qualitative), Transmission across a potential barrier, the tunnel effect (qualitative), scanning tunnelling microscope, One-dimensional simple	15
12 HoursActivities:03 HoursFoundation of Quantum MechanicsProbabilistic interpretation of the wave function - normalization and orthogonality of wave functions, Admissibility conditions on a wave function, Schrödinger equation: equation of motion of matter waves - Schrodinger wave equation for a free particle in one and three- dimension, time-dependent and time-independent wave equations, Probability current density, equation of continuity and its physical significance, Postulates of Quantum mechanics: States as normalized wavefunctions. Dynamical variables as linear Hermitian operators (position, momentum, angular momentum, and energy as examples). Expectation values of operators and their time evolution. Ehrenfest theorem (no derivation), Commutator brackets- Simultaneous Eigen functions, Commutator bracket using position, momentum and angular momentum operators. Particle in a one-dimensional infinite potential well (derivation), degeneracy in three- dimensional case, particle in a finite potential well (qualitative), Transmission across a potential barrier, the tunnel effect (qualitative), scanning tunnelling microscope, One-dimensional simple harmonic oscillator (qualitative) - concept of zero - point energy. 12 Hours	15
12 Hours Activities: 03 Hours Foundation of Quantum Mechanics Probabilistic interpretation of the wave function - normalization and orthogonality of wave functions, Admissibility conditions on a wave function, Schrödinger equation: equation of motion of matter waves - Schrodinger wave equation for a free particle in one and three-dimension, time-dependent and time-independent wave equations, Probability current density, equation of continuity and its physical significance, Postulates of Quantum mechanics: States as normalized wavefunctions. Dynamical variables as linear Hermitian operators (position, momentum, angular momentum, and energy as examples). Expectation values of operators and their time evolution. Ehrenfest theorem (no derivation), Commutator brackets- Simultaneous Eigen functions, Commutator bracket using position, momentum and angular momentum operators. Particle in a one-dimensional infinite potential well (derivation), degeneracy in three-dimensional case, particle in a finite potential well (qualitative), Transmission across a potential barrier, the tunnel effect (qualitative), scanning tunnelling microscope, One-dimensional simple harmonic oscillator (qualitative) - concept of zero - point energy. 12 Hours Activities: 03 Hours	15

Pedagogy: Lecture/ PPT/ Videos/ Animations/ Role Plays/ Think-Pair-Share/ Predict-Observe-Explain/ Demonstration/ Concept mapping/ Case Studies examples/ Tutorial/ Activity/ Flipped Classroom/ Jigsaw/ Field based Learning/ Project Based Learning/ Mini Projects/ Hobby Projects/ Forum Theatre/ Dance/ Problem Based Learning/ Game Based Learning/ Group Discussion/ Collaborative Learning/ Experiential Learning / Self Directed Learning etc

Formative Assessment for Theory		
Assessment Occasion/ type	Marks	
Total	40 Marks	
Formative Assessment as per UNIVERSITY guidelines are co	mpulsory	

	References			
1	Classical Mechanics, H.Goldstein, C.P. Poole, J.L. Safko, 3rd Edn. 2002, Pearson Education.			
2	Classical Mechanics: An introduction, Dieter Strauch, 2009, Springer			
3	Classical Mechanics, G. Aruldhas, 2008, Prentice-Hall of India Private limited, New Delhi.			
4	Classical Mechanics, Takwale and Puranik-1989, Tata Mcgraw Hill, new Delhi			
5	Concepts of Modern Physics, Arthur Beiser, McGraw-Hill, 2009.			
6	Physics for Scientists and Engineers with Modern Physics, Serway and Jewett, 9th edition, Cengage Learning, 2014.			
7	Quantum Physics, Berkeley Physics Course Vol. 4. E.H. Wichman, Tata McGraw-Hill Co., 2008.			
8	Six Ideas that Shaped Physics: Particle Behave like Waves, Thomas A. Moore, McGraw Hill, 2003.			
9	P M Mathews and K Venkatesan, A Textbook of Quantum Mechanics, Tata McGraw Hill publication, ISBN: 9780070146174.			
10	Ajoy Ghatak, S. Lokanathan, Quantum Mechanics: Theory and Applications, Springer Publication, ISBN 978-1-4020-2130-5.			
11	Modern Physics; R.Murugeshan & K.Sivaprasath; S. Chand Publishing.			
12	G Aruldhas, Quantum Mechanics, Phi Learning Private Ltd., ISBN: 97881203363.			
13	Gupta, Kumar & Sharma, Quantum Mechanics, Jai Prakash Nath Publications.			
14	Physics for Degree Students B.Sc., Third Year, C.L.Arora and P.S.Hemne, 1st edition, S.Chand & Company Pvt. Ltd., 2014.			

Course Title Classical Mechanics and QuantumMechanics-I (Practical)		Practical Credits	02	
Course Code	Course Code PHY C10-P		Contact Hours	04Hours
Formative Assessment		25 Marks	Summative Assessment	25 Marks

Practical Content

Lab experiments: (at least 4 experiments from 1-6 and 4 experiments from 7-16)

1) To determine 'g', the acceleration due to gravity, at a given place, from the L - T 2 graph, for a simple pendulum.

2) Studying the effect of mass of the bob on the time period of the simple pendulum.

lint: With the same experimental set-up, take a few bobs of different materials (different masses) but of same size. Keep the length of the pendulum same for each case. Starting from a small angular displacement of about 10° find out, in each case, the time period of the pendulum, using bobs of different masses. Does the time period depend on the mass of the pendulum bob? If yes, then see the order in which the change occurs. If not, then do you see an additional reason to use the pendulum as a time measuring device.

3) Studying the effect of amplitude of oscillation on the time period of the simple pendulum.

int: With the same experimental set-up, keep the mass of the bob and length of the pendulum fixed. For measuring the angular amplitude, make a large protractor on the cardboard and have a scale marked on an arc from 0° to 90° in units of 5°. Fix it on the edge of a table by two drawing pins such that its 0°-line coincides with the suspension thread of the pendulum at rest. Start the pendulum oscillating with a very large angular amplitude (say 70°) and find the time period T of the pendulum. Change the amplitude of oscillation of the bob in small steps of 5° or 10° and determine the time period in each case till the amplitude becomes small (say 5°). Draw a graph between angular amplitude and T. How does the time period of the pendulum change with the amplitude of oscillation? How much does the value of T for A = 10° differ from that for A= 50° from the graph you have drawn? Find at what amplitude of oscillation, the time period begins to vary? Determine the limit for the pendulum when it ceases to be a simple pendulum.]

4) Determine the acceleration of gravity is to use an Atwood's machine.

- 5) Study the conservation of energy and momentum using projectile motion.
- 6) Verification of the Principle of Conservation of Linear Momentum

7) Determination of Planck constant and work function of the material of the cathode using Photoelectric cell.

- 8) To study the spectral characteristics of a photo-voltaic cell (Solar cell).
- 9) Determination of electron charge 'e' by Millikan's Oil drop experiment.
- **10)** To study the characteristics of solar cell.
- **11)** To find the value of e/m for an electron by Thomson's method using bar magnets.
- **12)** To determine the value of e/m for an electron by magnetron method.
- **13)** To study the tunnelling in Tunnel Diode using I-V characteristics.
- **14)** Determination of quantum efficiency of Photodiode.

15) A code in C/C++/Scilab to find the first seven eigen states and eigen functions of Linear Harmonic Oscillator by solving the Schrödinger equation.

16) A code in C/C++/Scilab to plot and analyse the wavefunctions for particle in aninfinite potential well.

Pedagogy: Demonstration/Experiential Learning / Self Directed Learning etc.

Formative Assessment for Practical		
Assessment Occasion/ type	Marks	
Total	25 Marks	

Formative Assessment as per UNIVERSITY guidelines are compulsory

References			
1	B.Sc Practical Physics by C.L Arora.		
2	B.Sc Practical Physics by Harnam Singh and P.S Hemne.		
3	Practical Physics by G.S Squires.		
4	Scilab Manual for CC-XI: Quantum Mechanics & Applications (32221501) by Dr Neetu Agrawal, Daulat Ram College of Delhi.		
5	Scilab Textbook Companion for Quantum Mechanics by M. C. Jain.		
6	Computational Quantum Mechanics using Scilab, BIT Mesra.		
7	Advanced Practical Physics for Students by Worsnop B L and Flint H T.		

<u>Force</u>

When forces are unbalanced, objects accelerate. But what factors affect the amount of acceleration? This Interactive allows learners to investigate a variety of factors that affect the acceleration of a box pushed across a surface, The amount of applied force, the mass, and the friction can be altered. A plot of velocity as a function of time can be used to determine the acceleration.

In the <u>Balloon Car Lesson Plan</u>, students build and explore balloon-powered cars. This lesson focuses mostly on energy, but it also demonstrates Newton's laws of motion. Guidance is provided for talking specifically about the third law of motion. *Question*: how does the air escaping the balloon relate to Newton's third law of motion? Does the car continue to coast after the balloon is deflated? Why or why not?

Most of the activities and lessons below *focus* on one or two of the laws of motion. The <u>Build a Balloon Car</u> activity specifically **talks about all three of Newton's laws of motion** students can observe when building and experimenting with a simple balloon-powered car. This is an accessible hands-on activity that uses recycled materials and balloons for a fun combined engineering design project and physics experiment. The activity can be used with a wide range of grade levels to introduce and demonstrate the laws of motion. See the "Digging Deeper" section for a straightforward discussion of how each law of motion can be identified in the balloon car activity. (For a related lesson plan, see <u>Balloon Car Lesson Plan</u>, which is NGSS-aligned for middle school and focuses on the third law of motion.)

In the <u>Push Harder — Newton's Second Law</u>, students build their own cars using craft materials and get hands-on exploring Newton's second law of motion and the equation

"force equals mass times acceleration" (F=ma). Options for gathering real-time data include using a mobile phone and a sensor app or using a meter stick and a stopwatch. Questions: What is the relationship between force, mass, and acceleration? As force increases, what happens to acceleration? In the Skydive Into Forces, students make parachutes and then investigate how they work to slow down a falling object. As students investigate the forces that are involved, educators can introduce Newton's second law of motion and how different forces change the resulting speed of a falling object. Questions: What forces help slow down the speed of a falling object? How does a parachute help slow the fall? th standard cameras (DSLRs, phone cameras) and our scientific cameras work on the 2 principle of photoelectric effect to produce an image from light, involving the use of photodetectorsandsensor pixels. Prepare a report on the working of digital camera. 3 monstration of Heisenberg uncertainty principle in the context of diffraction at a single slit: ie uncertainty in the momentum Δp_{χ} correspond to the angular spread of principal maximal θ. en, $\Delta p_{\chi} = \sin heta . p$ where p is the momentum of the incident photon. Conduct the diffraction at a slit experiment virtually using the following link tps://www.walter-fendt.de/html5/phen/singleslit_en.htm Measure the angular spread (Θ) for different slit widths (Δx) for given wavelength of 1. the incident photon. Determine the momentum of the incident photon using 2. $p = \frac{h}{\lambda}$

	3. Create a line of best fit through the points in the plot $\frac{1}{\Delta p_x}$ against Δx and find its
	slope. How this exercise is related to Heisenberg Uncertainty principle.
	ake a report of the observations.
4	rtual lab to demonstrate Photoelectric effect using Value@Amritha:Conduct the virtual
	experiment using the following link
	https://vlab.amrita.edu/?sub=1&brch=195∼=840&cnt=1
	1. Determine the minimum frequency required to have Photoelectric effectfor an EM radiation,
	when incident on a zinc metal surface.
	2. Determine the target material if the threshold frequency of EM radiation is5.5x10 ¹⁵ Hz in a
	particular photoelectric experimental set up.
	3. Determine the maximum kinetic energy of photo-electrons emitted from a Zinc metal
	4 What should be the stopping potential for photoelectrops if the target Material used is
	Platinum and incident frequency is 2×10^{15} Hz? Make a report of the calculations.
5	Visualization of wave packets using Physlet@Quantum Physics:
5	The concept of group velocity and phase velocity of a wave packet can be studied using
	thislink https://www.compadre.org/PQP/quantum-need/section5_9.cfm
	Students can take up the exercises using the link which is as
	followshttps://www.compadre.org/PQP/quantum-need/prob5_11.cfm
	Six different classical wave packets are shown in the animations. Which of the wave
	packets have a phase velocity that is: greater than / less than / equal to the group velocity?
	Make a report of the observations.
6	perposition of eigen states in an infinite one - dimensional potential well using QuVis
	(Quantum Mechanics Visualization Project):
	nstruct different possible states by considering the first three eigen states and study the
	variation of probability density with position. Take the challenges after understanding the
	simulation and submit the report. The link is as follows
	tps://www.standrews.ac.uk/physics/quvis/simulations_html5/sims/SuperpositionStates/Sup
	erpositionStates.html
7	termination of expectation values of position, momentum for a particle in a an infinite one -
	dimensional potential well using Physlet@Quantum Physics:
	e link to the visualization tool for the calculation is as follows
	https://www.compadre.org/PQP/quantum-theory/prob10_3.cfm
	A particle is in a one-dimensional box of length $L = 1$. The states shown are normalized. The
	results of the integrals that give $\langle x \rangle$ and $\langle x^2 \rangle$ and $\langle p \rangle$ and $\langle p^2 \rangle$. You may vary <i>n</i> from 1
	to 10. a) What do you potice about the values of c_{12} and c_{12} as you you n^2
	a) what do you holice about the values of x^2 and x^2 as you vary high
	c) What do you notice about the values of $\langle n \rangle$ and $\langle n^2 \rangle$ as you vary n^2
	Make a report of the calculations.
8	Determination of expectation values for a particle in a one-dimensional harmonic oscillator
U	using Physlet@Quantum Physics:
	The link to the visualization tool for the calculation is as follows
	tps://www.compadre.org/PQP/quantum-theory/prob12_2.cfm
	particle is in a one-dimensional harmonic oscillator potential ($\hbar = 2m = 1$; $\omega = k = 2$). The
	states shown are normalized. Shown are ψ and the results of the integrals that give $\langle x \rangle$
	and $\langle x^2 \rangle$ and $\langle p \rangle$ and $\langle p^2 \rangle$. Vary <i>n</i> from 1 to 10.

	a) What do you notice about how < <i>x</i> > and < <i>x</i> ² > and < <i>p</i> > and < <i>p</i> ² > change?						
	b) Calculate $\Delta x \cdot \Delta p$ for $n = 0$. What do you notice considering $\hbar = 1$?						
	c) What is <i>E</i> _n ? How does this agree with or disagree with the standard case						
	for the harmonic oscillator?						
	d) How much average kinetic and potential energies are in an arbitrary						
	energy state?						
	Make a report of the calculations.						
9	Calculate uncertainties of position and momentum for a particle in a boxusing						
	Physlet@Quantum Physics:						
	The link to the visualization tool for the calculation is as follows						
	https://www.compadre.org/PQP/quantum-theory/prob6_3.cfm						
	A particle is in a one-dimensional box of length $L = 1$. The states shown are normalized. The results of						
	the integrals that give $\langle x \rangle$ and $\langle x^2 \rangle$, and $\langle p \rangle$ and $\langle p^2 \rangle$. You may vary <i>n</i> from 1 to 10.						
	a. For $n = 1$, what are Δx and Δp ?						
	b. For $n = 10$, what are Δx and Δp ?						
10							
10	verice expressions for the three wave functions using Physiet@Quantum Physics: The link to the visualization tool for the calculation is as follows						
	https://www.compadre.org/POP/quantum-theory/prob8_1_cfm						
	These animations show the real (blue) and imaginary (pink) parts of three time-dependent energy						
	eigenfunctions. Assume x is measured in cm and time is measured in seconds.						
	a. Write an expression for each of the three time-dependent energy						
	eigenfunctions in the form: e ^{i(kx-wt)} .						
	b. What is the mass of the particle?						
	c. What would the mass of the particle be if time was being shown in ms?						
1.1	If you store a file on your computer today, you probably store it on a solid state drive (SSD)						
11	Nake a datailed was art on the rale of avantum turnelling in these devices.						
	iviake a detailed report on the role of quantum tunnelling in these devices.						

Government of Karnataka

Model Curriculum

Program Name	BSc in Physics	5	Semester	V
Course Title	Elements of Atomic, Molecular & Laser Physics (Theory)			
Course Code	PHY C11-T		No. of Credits	04
Contact Hours	60 Hours		Duration of SEA/Exam	02 Hours
Formative Assessment Marks 40		40	Summative Assessment Marks	60

Course Pre-requisite (s): PUC Science Knowledge

Course Outcomes (COs): After the completion of the course, the student will be able to

- Describe atomic properties using basic atomic models.
- Interpret atomic spectra of elements using vector atom model.
- Interpret molecular spectra of compounds using basics of molecular physics.
- Explain laser systems and their applications in various fields.

Contents	60 Hours		
Basic Atomic models	15		
Thomson's atomic model; Rutherford atomic model – Model, Theory of alpha particle			
scattering, Rutherford scattering formula; Bohr atomic model – postulates, Derivation of			
expression for radius, total energy of electron; Origin of the spectral lines; Spectral series of			
hydrogen atom; Effect of nuclear motion on atomic spectra - derivation; Ritz combination			
principle; Correspondence principle; Critical potentials - critical potential, excitation			
potential and ionisation potential; Atomic excitation and its types, Franck-Hertz experiment;			
Sommerfeld's atomic model – model, Derivation of condition for allowed elliptical orbits.			
12 Hours			
Activities: 03 Hours			
1. Students to estimate radii of orbits and energies of electron in case of hydrogen atom			
in different orbits and plot the graph of radii / energy versus principal quantum			
number 'n'. Analyze the nature of the graph and draw the inferences.			
2. Students to search critical, excitation and ionisation potentials of different elements			
and plot the graph of critical /excitation / ionisation potentials versus atomic			
number/mass number/neutron number of element. Analyze the nature of the graph			
and draw the inferences.			
Vector atomic model and optical spectra	15		
Vector atom model – model fundamentals, spatial quantisation, spinning electron; Quantum			
numbers associated with vector atomic model; Coupling schemes – L-S and j-j schemes;			
Pauli's exclusion principle; Magnetic dipole moment due to orbital motion of electron -			
derivation; Magnetic dipole moment due to spin motion of electron; Lande g-factor and its			
calculation for different states; Stern-Gerlach experiment – Experimental arrangement and			
Principle; Fine structure of spectral lines with examples; Spin-orbit coupling/Spin-Orbit			
Interaction – qualitative; Optical spectra – spectral terms, spectral notations, selection rules,			
intensity rules; Fine structure of the sodium D-line; Zeeman effect: Types, Experimental study			
and classical theory of normal Zeeman effect, Zeeman shift expression (no derivation),			
examples; Stark effect: Experimental study, Types and examples. 12 Hours			
Activities: 03 Hours			
1. Students to couple a p-state and s-state electron via L-S and j-j coupling schemes for a			
system with two electrons and construct vector diagrams for each resultant. Analyze			
the coupling results and draw the inferences.			

Students to estimate magnetic dipole moment due to orbital motion of electron for different states ²P_{1/2}, ²P_{3/2}, ²P_{5/2}, ²P_{7/2}, ²P_{9/2} and ²P_{11/2} and plot the graph of dipole moment versus total orbital angular momentum "J'. Analyze the nature of the graph and draw the inferences.

Molecular Physics

Types of molecules based on their moment of inertia; Types of molecular motions and energies; Born-Oppenheimer approximation; Origin of molecular spectra; Nature of molecular spectra; Theory of rigid rotator – energy levels and spectrum, Qualitative discussion on Non-rigid rotator and centrifugal distortion; Theory of vibrating molecule as a simple harmonic oscillator – energy levels and spectrum; Electronic spectra of molecules – fluorescence and phosphorescence; Raman effect – Stoke's and anti-Stoke's lines, characteristics of Raman spectra, classical and quantum approaches, Experimental study of Raman effect; Applications of Raman effect. **12 Hours**

Activities:

03 Hours

- 1. Students to estimate energy of rigid diatomic molecules CO, HCl and plot the graph of rotational energy versus rotational quantum number 'J'. Analyse the nature of the graph and draw the inferences. Also students study the effect of isotopes on rotational energies.
- 2. Students to estimate energy of harmonic vibrating molecules CO, HCl and plot the graph of vibrational energy versus vibrational quantum number 'v'. Analyse the nature of the graph and draw the inferences.

Laser Physics

Ordinary light versus laser light; Characteristics of laser light; Interaction of radiation with matter - Induced absorption, spontaneous emission and stimulated emission with mention of rate equations; Einstein's A and B coefficients – Derivation of relation between Einstein's coefficients and radiation energy density; Possibility of amplification of light; Population inversion; Methods of pumping; Metastable states; Requisites of laser - energy source, active medium and laser cavity; Difference between Three level and four level lasers with examples; Types of lasers with examples; Construction and Working principle of Ruby Laser and He-Ne Laser; Application of lasers (qualitative) in science & research, isotope separation, communication, fusion, medicine, industry, war and space. 12 Hours

Activities:

03 Hours

- Students to search different lasers used in medical field (ex: eye surgery, endoscopy, dentistry etc.), list their parameters and analyse the need of these parameters for specific application, and draw the inferences. Students also make the presentation of the study.
- Students to search different lasers used in defense field (ex: range finding, laser weapon, etc.), list their parameters and analyse the need of these parameters for specific application, and draw the inferences. Students also make the presentation of the study.

15
Pedagogy: Lecture/ PPT/ Videos/ Animations/ Role Plays/ Think-Pair-Share/ Predict-Observe-Explain/ Demonstration/ Concept mapping/ Case Studies examples/ Tutorial/ Activity/ Flipped Classroom/ Jigsaw/ Field based Learning/ Project Based Learning/ Mini Projects/ Hobby Projects/ Forum Theatre/ Dance/ Problem Based Learning/ Game Based Learning/ Group Discussion/ Collaborative Learning/ Experiential Learning / Self Directed Learning etc.

Formative Assessment for Theory							
Assessment Occasion/ type Marks							
Total	40 Marks						
Formative Accessment as not LINU/FDSITY suidelines are compulsory							

Formative Assessment as per UNIVERSITY guidelines are compulsory

References							
1	Modern Physics, R. Murugeshan, Kiruthiga Sivaprakash, Revised Edition, 2009, S. Chand &						
	Company Ltd.						
2	Atomic & Molecular spectra: Laser, Raj Kumar, Revised Edition, 2008, Kedar Nath Ram Nath						
	Publishers, Meerut.						
3	Atomic Physics, S.N. Ghoshal, Revised Edition, 2013, S. Chand & Company Ltd.						
4	Concepts of Atomic Physics, S.P. Kuila, First Edition, 2018, New Central Book Agency (P) Ltd.						
5	Concepts of Modern Physics, Arthur Beiser, Seventh Edition, 2015, Shobhit Mahajan, S. Rai						
	Choudhury, 2002, McGraw-Hill.						
6	Fundamentals of Molecular Spectroscopy, C.N. Banwell and E.M. McCash, Fourth Edition, 2008,						
	Tata McGraw-Hill Publishers.						
7	Elements of Spectroscopy – Atomic, Molecular and Laser Physics, Gupta, Kumar and Sharma,						
	2016, Pragati Publications.						

Course Title	Elemen	Practical Credits	02					
	(Practica							
Course Code	Contact Hours	04 Hours						
Formative Asses	ssment	25 Marks	Summative A	ssessment	25 Marks			
Practical Content								

LIST OF EXPERIMENTS

- 1. To determine Planck's constant using Photocell.
- 2. To determine Planck's constant using LED.
- 3. To determine wavelength of spectral lines of mercury source using spectrometer.
- 4. To determine the value of Rydberg's constant using diffraction grating and hydrogen discharge tube.
- 5. To determine the wavelength of H-alpha emission line of Hydrogen atom.
- 6. To determine fine structure constant using fine structure separation of sodium D-lines using a plane diffraction grating.
- 7. To determine the value of e/m by Magnetic focusing or Bar magnet.
- 8. To determine the ionization potential of mercury.
- 9. To setup the Millikan oil drop apparatus and determine the charge of an electron.
- 10. To determine the absorption lines in the rotational spectrum of lodine vapour.
- 11. To determine the force constant and vibrational constant for the iodine molecule from its absorption spectrum.
- 12. To determine the wavelength of laser using diffraction by single slit/double slits.
- 13. To determine wavelength of He-Ne laser using plane diffraction grating.
- 14. To determine angular spread of He-Ne laser using plane diffraction grating.
- 15. Study of Raman scattering by CCl₄ using laser and spectrometer/CDS.

NOTE: Students have to perform at-least EIGHT Experiments from the above list.

Pedagogy:Demonstration/Experiential Learning / Self Directed Learning etc.

Formative Assessment for Practical						
Assessment Occasion/ type Marks						
Total	25 Marks					
Formative Assessment as per UNIVERSITY guidelines are compulsory						

	References
1	Practical Physics, D.C. Tayal, First Millennium Edition, 2000, Himalaya Publishing House.
2	B.Sc. Practical Physics, C.L. Arora, Revised Edition, 2007, S. Chand & Comp.Ltd.
3	An Advanced Course in Practical Physics, D. Chatopadhyaya, P.C. Rakshith, B. Saha, Revised Edition, 2002, New Central Book Agency Pvt. Ltd.

Government of Karnataka

Model Curriculum

Program Name	Program Name BSc in Physics			Semester	VI
Course Title	Elementsof Co	ndensed Matter &	Nucle	arPhysics	
Course Code	РНҮ С14 - Т			No. of Credits	4
Contact Hours	60Hours			Duration of SEA/Exam	3Hours
Formative Assessment Marks 40		Sum	mative Assessment Marks	60	

Course Pre-requisite(s):

4

4

Course Outcomes (COs): After the successful completion of the course, the student will be able to:

- Explain the basic properties of nucleus and get the idea of its inner information.
- Understand the concepts of binding energy and binding energy per nucleon v/s mass number graph.
- Describe the processes of alpha, beta and gamma decays based on well-established theories.
- Explain the basic aspects of interaction of gamma radiation with matter by photoelectric effect, Compton scattering and pair production.
- Explain the different nuclear radiation detectors such as ionization chamber, Geiger-Mueller counter etc.
- Explain the basic concept of scintillation detectors, photo-multiplier tube and semiconductor detectors.

Contents	60 Hours
Crystal systems and X-rays: Crystal structure: SpaceLattice, Lattice translational vectors, Basis	15
of crystal structure, Types of unit cells, primitive, non-primitive cells Seven crystal system,	15
Coordination numbers, Miller Indices, Expression for inter planner spacing. X Rays: Production	
and properties of X rays, Coolidge tube, Continuous and characteristic X-ray spectra;	
Moseley's law. X-Ray diffraction, Scattering of X-rays, Bragg's law. Crystal diffraction: Bragg's	
X-ray spectrometer- powder diffraction method, Intensity vs 2 $ heta$ plot (qualitative).	
Free electron theory of metals: Classical free electron model (Drude-Lorentz model), expression for electrical and thermal conductivity, Weidman-Franz law, Failure of classical free electron theory; Quantum free electron theory, Fermi level and Fermi energy, Fermi-Dirac distribution function (expression for probability distribution F(E), statement only); Fermi Dirac distribution at T=0 and E <e<sub>f, at T\neq 0 and E>E_f, F(E) vs E plot at T = 0 and T\neq 0. Density of states for free electrons (statement only, no derivation). Qualitative discussion of lattice vibration and concept of Phonons.: Specific heats of solids: Classical theory. Einstein's and</e<sub>	

Debye's theory of specific heats. Hall Effect in metals. 12 HOURS	
ACTIVITIES: 03 HOURS	
Magnetic Properties of Matter, Dielectrics and Superconductivity	15
Magnetic Properties of Matter	15
Review of basic formulae: Magnetic intensity, magnetic induction, permeability, magnetic	
susceptibility, magnetization (M), Classification of Dia, Para, and ferro magnetic materials;	
Langevin Classical Theory of dia – and Paramagnetism. Curie's law, Ferromagnetism and	
Ferromagnetic Domains (qualitative). Discussion of B-H Curve. Hysteresis and Energy Loss,	
Hard and Soft magnetic materials	
Dielectrics : Static dielectric constant, polarizability (electronic, ionic and orientation),	
calculation of Lorentz field (derivation), Clausius-Mosotti equation (derivation), dielectric loss.	
Piezo electric effect, cause, examples and applications.	
Superconductivity: Definition, Experimental results – Zero resistivity and Critical temperature–	
The critical magnetic field – Meissner effect, Type I and type II superconductors. 12 Hours	
ACTIVITIES: 03 Hours	
General Properties of Nuclei: Constituents of nucleus and their intrinsic properties,	15
quantitative facts about mass, radii, charge density (matter density), binding energy, main	
features of binding energy versus mass number curve, angular momentum, parity, magnetic	
moment, electric moments	
Radioactivity decay: Radioactivity: definition of radioactivity, half-life, mean life, radioactivity	
equilibrium (a) Alpha decay: basics of α -decay processes theory of α emission (brief) Gamow	
factor Geiger-Nuttall law (b) B-decay: energy kinematics for B-decay positron emission	
electron canture, neutrino hypothesis (c) Gamma decay: Gamma rays' emission & kinematics	
internal conversion (Definition) 12 Hours	
Interaction of Nuclear Padiation with matter: Camma ray interaction through matter	15
netraction of Nuclear Natiation with matter. Gamma ray interaction through matter,	15
(quantitative description of Datha Diack formula), energy loss due to ionization	
(quantitative description of Bethe Block formula), energy loss of electrons, introduction of	
Detector for Nuclear Radiations: Gas detectors: estimation of electric field, mobility of	
particle, for ionization chamber and GM Counter. Basic principle of Scintillation Detectors and	
construction of photo-multiplier tube (PMT). Semiconductor Detectors (Si and Ge) for charge	
particle and photon detection (concept of charge carrier and mobility) qualitative only,	
Accelerators: Cyclotrons and Synchrotrons. 12 Hours	
ACTIVITIES: 03 Hours	
Suggested Activities:	
Students to construct seven crystal systems with bamboo sticks and rubber bands. Use foam	
ball as atoms and study the BCC and FCC systems.	
2)Students to search the characteristic X ray wavelength of different atoms/elements and plot	
characteristic wavelength vs atomic number and analyse the result and draw the inference.	
Magnetic field lines are invisible. Students to trace the magnetic field lines using bar magnet	
and needle compass. <u>https://nationalmaglab.org/magnet-academy/try-this-at-</u>	
home/drawing-magnetic-field-lines/,	
4)Using vegetable oil and iron fillings students to make ferrofluids and see how it behaves in	
the presence of magnetic field. https://nationalmaglab.org/magnet-academy/trv-this-at-	
home/making-ferrofluids/	
76 P a g e	

1) Study the decay scheme of selected alpha, beta & gamma radioactive sources with the						
help of standard nuclear data book.						
2) Calculate binding energy of some selected light, medium and heavy nuclei. Plot the						
graph of binding energy versus mass number A						
3) Study the decay scheme of standard alpha, beta and gamma sources using nuclear data						
book.						
4) Make the list of alpha emitters from Uranium series and Thorium series. Search the						
kinetic energy of alpha particle emitted by these alpha emitters. Collect the required data						
such as half life or decay constant. Verify Geiger-Nuttal in each series.						
5) Study the Z dependence of photoelectric effect cross section.						
6) Study the Z dependence of common cross section for selected gamma energies and						
selected elements through theoretical calculation.						
7) List the materials and their properties which are used for photocathode of PMT.						
8) Study any two types of PMT and their advantages and disadvantages.						

Pedagogy: Lecture/ PPT/ Videos/ Animations/ Role Plays/ Think-Pair-Share/ Predict-Observe-Explain/ Demonstration/ Concept mapping/ Case Studies examples/ Tutorial/ Activity/ Flipped Classroom/ Jigsaw/ Field based Learning/ Project Based Learning/ Mini Projects/ Hobby Projects/ Forum Theatre/ Dance/ Problem Based Learning/ Game Based Learning/ Group Discussion/ Collaborative Learning/ Experiential Learning / Self Directed Learning etc.

Formative Assessment for Theory							
Assessment Occasion/ type Marks							
Total	40 Marks						

Formative Assessment as per UNIVERSITY guidelines are compulsory

References

- 1. Solid State Physics-R. K. Puri and V.K. Babber., S.Chand publications, 1st Edition(2004).
- 2. Fundamentals of Solid State Physics-B.S.Saxena, P.N. Saxena, Pragati prakashan Meerut (2017).
- 3. Introductory nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd., 2008).
- 4. Nuclear Physics, Irving Kaplan, Narosa Publishing House
- 1. Introductiontosolid StatePhysics, Charles Kittel, VIIedition, (1996)
- 5. Solid State Physics-A JDekker, MacMillanIndia Ltd, (2000)
- 6. Essential of crystallography, MA Wahab, Narosa Publications (2009)
- 7. Solid State Physics-**SO Pillai**-New Age Int. Publishers(**2001**).
- 8. Concepts of nuclear physics by Bernard L. Cohen. (Tata McGraw Hill, 1998).
- 9. Introduction to the physics of nuclei & particles, R.A. Dunlap. (Thomson Asia, 2004).
- 10. Introduction to High Energy Physics, D.H. Perkins, Cambridge Univ. Press
- 11. Basic ideas and concepts in Nuclear Physics An Introductory Approach by K. Heyde (Institute of Physics (IOP) Publishing, 2004).
- 12. Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).
- 13. Physics and Engineering of Radiation Detection, Syed Naeem Ahmed (Academic Press, Elsevier, 2007).

Title	Course	Elements (Practical	of)	Condensed	Matter	&	Nuclear	Physics	Practical Credits	02
Cours	e Code	PHY C15	- P						Contact Hours	04Hours
Forma	Formative Assessment25 MarksSummative Assessment25 Marks									25 Marks
					Practica	l Cor	ntent			
CONDE	ENSED MA	TTER PHY	SICS							
1.	Determina	ation of P	lank':	s constant k	y Photo	Cell				
2.	Hall Effect	t in semic	ondu	ctor: deter	nination	of mo	obility. l	hall coef	ficient.	
3.	Energy ga	p of semi	cond	uctor (diod	e/transist	or) b	y revers	se satura	tion method	
4.	Thermisto	or energy	gap							
5.	Fermi Ene	ergy of Co	pper							
6.	Analysis o	of X-ray dif	ffract	ion spectra	and calc	ulatic	on of lat	tice para	ameter.	
7.	Plank's co	nstant by	LED							
8.	Specific H	eat of Sol	id by	Electrical N	1ethod					
9.	Determina	ation of D	ielec	tric Constar	nt of pola	r liqu	id.			
10.	Determina	ation of d	ipole	moment of	⁻ organic	liquic	1			
11. B-H Curve Using CRO.										
12. Spectral Response of Photo Diode and its I-V Characteristics.										
13.	13. Determination of particle size from XRD pattern using Debye-Scherrer formula.									
14.	14. Measurement of susceptibility of paramagnetic solution (Quinck's Tube Method).									
15.	Measurer NUCI	nent of su L EAR PHY	iscep SICS	tibility of pa	aramagne	etic so	olid (Go	uy's Met	thod)	
1.	 Study the characteristics of Geiger-Muller Tube. Determine the threshold voltage, plateau region and operating voltage. 									
2.	 Study the absorption of beta particles in aluminium foils using GM counter. Determine mass attenuation coefficient of Aluminium foils. 									
3.	3. Study the absorption of beta particles in thin copper foils using G M counter and determine mass attenuation coefficient.									
4.	4. Study the attenuation of gamma rays in lead foils using Cs-137 source and G M counter. Calculate mass attenuation coefficient of Lead for Gamma.									
5.	Determin aluminiun	e the end n foils.	l poir	nt energy o	f TI-204	sourc	e by st	udying t	he absorption of I	peta particles in
6.	 Study the attenuation of absorption of gamma rays in polymeric materials using Cs-137 source and G M counter. 									
edagogy: Demonstration/Experiential Learning / Self Directed Learning etc.										

Formative Assessment for Practical							
Assessment Occasion/ type Marks							

25 Marks

Formative Assessment as per UNIVERSITY guidelines are compulsory

	References				
1	IGNOU: Practical PhysicsManual				
2	Saraf : ExperimentinPhysics, VikasPublications				
3	S.P. Singh : Advanced Practical Physics				
4	Melissons : ExperimentsinModern Physics				
5	Misra and Misra, PhysicsLab.Manual, South Asianpublishers, (2000)				
6	Gupta and Kumar, Practical physics, Pragatiprakashan,(1976)				

Government of Karnataka

Model Curriculum

Program Name BSc in Physics			Semester	VI	
Course Title	Course Title Electronic Instrumentation & Sens		sors <mark>(T</mark> l	neory)	
Course Code:	PHY C16 - T		No. of Credits		04
Contact Hours 60 Hours			Dura	tion of SEA/Exam	2 Hours
Formative Assess	sment Marks	40	Sum	mative Assessment Marks	60

Course Pre-requisite(s):

Course Outcomes (COs): After the successful completion of the course, the student will be able to:

- Identify different types of tests and measuring instruments used in practice and understand their basic working principles.
- Get hands on training in wiring a circuit, soldering, making a measurement using an electronic circuit used in instrumentation.
- Have an understanding of the basic electronic components viz., resistors, capacitors, inductors, discrete and integrated circuits, colour codes, values and pin diagram, their practical use.
- Understanding of the measurement of voltage, current, resistance value, identification of the terminals of a transistor and ICs.
- Identify and understand the different types of transducers and sensors used in robust and hand-held instruments.
- Understand and give a mathematical treatment of the working of rectifiers, filter, data converters and different types of transducers.
- Connect the concepts learnt in the course to their practical use in daily life.

- Develop basic hands-on skills in the usageof oscilloscopes, multimeters, rectifiers, amplifiers, oscillators and high voltage probes, generators and digital meters.
- Servicing of simple faults of domestic appliances: Iron box, immersion heater, fan, hot plate, battery charger, emergency lamp and the like.

Contents	60Hours		
Power supply	15		
AC power and its characteristics, Single phase and three phase, Need for DC power supply and its characteristics, line voltage and frequency, Rectifier bridge, Filters: Capacitor and inductor filers, L-section and π -section filters, ripple factor, electronic voltage regulators, stabilization factor, voltage regulation using ICs. Basic electrical measuring instruments Cathode ray oscilloscope- Block diagram, basic principle, electron beam, CRT features, signal			
Basic DC voltmeter for measuring potential difference, Extending Voltmeter range, AC voltmeter using rectifiers			
Topics for self-study:			
Average value and RMS value of current, Ripple factor, Average AC input power and DC output power, efficiency of a DC power supply. Multirange voltmeter and ammeter. 12 Hours ACTIVITIES: 03 Hours			
Activities			
Design and wire your own DC regulated power supply. Power output: 5 V, 10 V, ± 5 V. Components required: A step down transformer, semiconductor diodes (BY126/127), Inductor, Capacitor, Zener diode or 3-pin voltage regulator or IC. Measure the ripple factor and efficiency at each stage. Tabulate the result.			
1. Extend the range of measurement of voltage of a voltmeter (analog or digital) using			
external component and circuitry. Design your own circuit and report.			
2. Measure the characteristics of the signal waveform using a CRO and function generator.			
Tabulate the frequency and time period. Learn the function of Trigger input in an CRO.			
3. Learn to use a Storage Oscilloscope for measuring the characteristics of a repetitive input			
signal. Convince yourself how signal averaging using Storage CRO improves S/N ratio.			
Wave form generators and Filters	15		
Basic principle of standard AF signal generator: Fixed frequency and variable frequency, AF sine			
and square wave generator, basic Wein-bridge network and oscillator configuration, Triangular			
and saw tooth wave generators, circuitry and waveforms.			
Passive and active filters. Fundamental theorem of filters, Proof of the theorem by considering a			
symmetrical T-network. Types of filters, Circuitry and Cut-off frequency and frequency response of			
Passive (RC) and Active (op-amp based) filters: Low pass, high pass and band pass. 12 Hours			
ACTIVITIES: 03 Hours			
Activities			
1. Measure the amplitude and frequency of the different waveforms and tabulate the results.			
square wave).			
2. Explore where signal filtering network is used in real life. Visit a nearby telephone exchange and discuss with the Engineers and technicians. Prepare a report.			

3. Explore op-amp which works from a single supply biasing voltage (+15V). Construct an	
inverting/non-inverting amplifier powered by a single supply voltage instead of dual or	
bipolar supply voltage.	
4. Op-amp is a linear (analog) IC. Can it be used to function as logic gates? Explore, construct	
and implement AND, OR NAND and NOR gate functions using op-amps.	
Verify the truth table. Hint: LM3900 op-amp may be used. The status of the output	
may be checked by LED.	
Data Conversion and display $D_{initial}$ (A/D) converting A/D convertes with use	15
Digital to Analog (D/A) and Analog to Digital (A/D) converters – A/D converter with pre-	
converter Op-amp based D/A converter	
Digital display systems and Indicators- Classification of displays Light Emitting Diodes (LED) and	
Liquid Crystal Display (LCD) – Structure and working.	
Data Transmission systems – Advantages and disadvantages of digital transmission over analog	
transmission, Pulse amplitude modulation (PAM), Pulse time modulation (PTM) and Pulse width	
modulation (PWM)- General principles. Principle of Phase Sensitive Detection (PSD).	
Topic for self-study: Lock-in amplifier and its application, phase locked loop. 12 Hours	
ACTIVITIES: 03 Hours	
Activities	
1. Explore where modulation and demodulation technique is employed in real life. Visit a	
Radio broadcasting station. (Aakashavani or Private). Prepare a report on different AM and	
FM stations.	
2. Explore and find out the difference between a standard op-amp and an instrumentation	
op-amp. Compare the two and prepare a report.	
Transducers and sensors	15
Definition and types of transducers. Basic characteristics of an electrical transducer, factors	
governing the selection of a transducer, Resistive transducer-potentiometer, Strain gauge and	
types (general description), Resistance thermometer-platinum resistance thermometer.	
Thermistor. Inductive Transducer-general principles, Linear Variable Differential Transducer	
(LDVT)- principle and construction, Capacitive Transducer, Piezo-electric transducer,	
Photoelectric transducer, Photovoltaic cell, photo diode and phototransistor – principle and	
WORKING.12 HOURS	
ACTIVITIES: 03 HOURS	
1 Construct your own thermocounle for the measurement of temperature with conner and	
constantan wires. Use the thermocouple and a Digital multimeter (DMM) Record the emf	
(voltage induced) by maintaining one of the junctions at a constant temperature (say at 0°	
C. melting ice) and another junction at variable temperature bath. Tabulate the voltages	
induced and temperatures read out using standard chart (Chart can be downloaded from	
the internet).	
2. Observe a solar water heater. Some solar water heaters are fitted with an anode rod (alloy	

of aluminium). Study why it is required. Describe the principle behind solar water heater.

Pedagogy: Lecture/ PPT/ Videos/ Animations/ Role Plays/ Think-Pair-Share/ Predict-Observe-Explain/ Demonstration/ Concept mapping/ Case Studies examples/ Tutorial/ Activity/ Flipped Classroom/ Jigsaw/ Field based Learning/ Project Based Learning/ Mini Projects/ Hobby Projects/ Forum Theatre/ Dance/ Problem Based Learning/ Game Based Learning/ Group Discussion/ Collaborative Learning/ Experiential Learning / Self Directed Learning etc.

Formative Assessment for Theory			
Assessment Occasion/ type	Marks		
Total	40 Marks		
Formative Assessment as per UNIVERSITY guidelines are compulsory			

References

- 1. Physics for Degree students (Third Year) C.L. Arora and P.S. Hemne, S, Chand and Co. Pvt. Ltd. 2014 (For Unit-1, Power supplies)
- 2. Electronic Instrumentation, 3rd Edition, H.S. Kalsi, McGraw Hill Education India Pvt. Ltd. 2011 (For rest of the syllabus)
- Instrumentation Devices and Systems (2nd Edition)– C.S. Rangan, G.R. Sarma, V.S.V. Mani, Tata McGraw Hill Education Pvt. Ltd. (Especially for circuitry and analysis of signal generators and filters)

Course Title	Electronic Instrumentation & Sensors (Practical)			Practical Credits	02
Course Code PHY C17		- P		Contact Hours	04Hours
Formative Assessment		25 Marks	Summative Assessment		25 Marks

Practical Content

List of experiments (At least 8 experiments to be performed)

- 1. Construct a DC power supply using a bridge rectifier and a capacitor filter. Use a Zener diode or a 3pin voltage regulator and study the load and line regulation characteristics. Measure ripple factor with and without filter and compare with theoretical values.
- 2. Calibration of a low range voltmeter using a potentiometer
- 3. Calibration of an ammeter using a potentiometer
- 4. Design and construct a Wien bridge oscillator (sine wave oscillator) using μA 741 op-amp. Choose the values of R and C for a sine wave frequency of 1 KHz. Vary the value of R and C to change the oscillation frequency.
- 5. Design and construct a square wave generator using μA 741 op-amp. Determine its frequency and compare with the theoretical value. Also measure the slew rate of the op-amp. If the 741 is replace by LM318, study how does the waveform compare with the previous one.
- 6. Study the frequency response of a first order op-amp low pass filter

- 7. Study the frequency response of a first order op-amp low pass filter
- 8. Study the characteristics of *pn*-junction of a solar cell and determine its efficiency.
- 9. Study the illumination intensity of a solar cell using a standard photo detector (e.g., lux meter).
- 10. Study the characteristics of a LED (variation of intensity of emitted light).
- 11. Study the characteristics of a thermistor (temperature coefficient of resistance)
- 12. Study the characteristics of a photo-diode
- 13. Determine the coupling coefficient of a piezo-electric crystal.
- 14. Study the amplitude modulation using a transistor.
- 15. Performance analysis of A/D and D/A converter using resistor ladder network and op-amp.

Pedagogy: Lecture/ PPT/ Videos/ Animations/ Role Plays/ Think-Pair-Share/ Predict-Observe-Explain/ Demonstration/ Concept mapping/ Case Studies examples/ Tutorial/ Activity/ Flipped Classroom/ Jigsaw/ Field based Learning/ Project Based Learning/ Mini Projects/ Hobby Projects/ Forum Theatre/ Dance/ Problem Based Learning/ Game Based Learning/ Group Discussion/ Collaborative Learning/ Experiential Learning / Self Directed Learning etc.

Formative Assessment for Practical			
Assessment Occasion/ type	Marks		
Total	25 Marks		

Formative Assessment as per University guidelines are compulsory

References

- 1. Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- 2. B.Sc. Practical Physics, C.L. Arora (Revised Edition), S. Chand and Co. Ltd. 2007
- 3. Practical Physics, D.C. Tayal, First Millennium Edition, Himalaya Publishing House, 2000

Employability and skill development

The whole syllabus is prepared with a focus on employability.

Skill development achieved: Fundamental understanding of the working of test and measuring instruments. Operating and using them for measurements. Servicing of laboratory equipment for simple cable faults, loose contacts and discontinuity.

Job opportunities: Lab Assistant/Scientific Assistant in hospitals, R and D institutions, educational institutions.