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Physics 135 Syllabus: Winter 2011

Class Meetings:

e Monday, Tuesday, Thursday, Friday
0 2:00-3:00 (Section 100)
0 3:00-4:00 (Section 200)

e Location: Dennison 170

Instruction Team:

e Section 100: Dr. Andrew Tomasch
0 atomasch@umich.edu
o Office hours: Mon 10-12, Wed 2-4, in the Physics Help Room.
Additional times by appointment.

e Section 200: Dr Jens-Christian Meiners
0 meiners@umich.edu
o0 Office hours: Tues 11-12 in 4028c Chem. Additional times by
appointment. (Secretary: atitus@umich.edu ).

Introduction to the Course

Physics 135 is the first in a two semester sequence intended to help you learn how physics enables life
and how the laws of physics help to define the boundaries of biodiversity. It is our hope that these courses
will enrich your understanding of and appreciation for the wonder of life, and provide a solid foundation
for your later work in the life sciences. The physical underpinnings of life are not obvious. It is only
during the last half century that the mechanisms of life began to be exposed. Important mysteries remain.
During the class we will explore many examples drawn from current research, including perhaps some
not yet announced as the class begins.

Learning physics is a challenge for several reasons. First, you may have to unlearn things. Much of what
we will discuss is drawn from daily life. You already have ideas in your mind about how these things
happen. Many of these ideas are correct, but it’s likely that some are not. Second, you will have to
understand the style of explanation which characterizes physics. In physics, we look first for fundamental
principles which govern the essential nature of a phenomenon. With that in hand, we gradually add back
the complex details which make each case so different. This focus on the essentials is unusually strong in
physics, and somewhat different from the natural approach in chemistry or biology. You’ll need to hone
your ability to find the main point, and practice applying essential principles to many new and somewhat
different examples.

The only way to learn physics is to do it. Because of this, we will ask each of you to spend a lot of time
personally wrestling with the topic. You will have a variety of assignments in class and out which ask you
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to approach every topic from a variety of perspectives, each time using what you’ve learned in new ways.
If you do all of what we ask, you are quite likely to do well in the class. We are committed to the success
of every student. If doing everything we ask is not all you need, we are prepared to work with you until
you learn what you need to know.

Elements of the Class:

This course will include a number of components to help you learn how to apply essential ideas of
physics to understanding life. These elements of the course include:

e A Textbook: This course is an entirely new one, developed at the University of Michigan
beginning in the fall of 2006. The coursepack you will use for the course is a draft version of a
textbook currently being developed for publication in summer 2012. It takes an approach to
teaching physics for the life sciences which is new, but beginning to be more widely adopted. For
example, students at Haverford College in Pennsylvania and Wartburg College in lowa will be
using this same text this year. The coursepack is available both in printed form (for about $30
from Dollar Bill Copy on Church St) and as a free PDF file on the Ctools site.

e Readings: The time we spend in class will be focused on trying to understand the most difficult
aspects of the material, rather than on providing a first-look introduction to every new topic. To
make this work, you have to come to class prepared. This means you will have material to read
and think about before every class. This will typically be 20-25 pages from the coursepack,
occasionally accompanied by an additional reading.

o Daily Homework Assignments: To help you to prepare for class, you will have to answer a few
simple questions and solve a few straightforward problems for each lecture meeting of the class.
Working through these will help make sure you’re ready for what we’ll do during the lecture
period. These assignments will be available on the course Ctools site in the Test Center part of the
site. Each assignment will include one or more questions asking you to give us information. After
you read the text, we want to know which topics are still the most confusing. We will use this
information to decide what to cover them more extensively in class. As a result, you will need to
complete these assignments by 10:00 AM on the date of each lecture: Monday and Thursday.

e Lecture/Demonstration: On Mondays and Thursdays we will spend our time exploring the latest
course material in a lecture/demonstration format. During these sessions we will go over some
details, view and analyze demonstrations of the phenomena in question, and work through
questions designed to challenge your understanding of the material. Several times during lecture
we will use i>clicker electronic response units to test your understanding of the material in real
time. You will need to purchase an i>clicker unit from the Computer Showcase for this purpose.
The details are available at:

http://showcase.itcs.umich.edu/pages/remotes/

e Discussion: On Tuesdays and Fridays we will spend our time in more fully active mode.
Discussion will regularly include the detailed presentation of a demonstration, during which you
will be asked to ponder a number of questions and answer through the i>clicker system. After this
interactive demonstration, you will work solving additional problems and constructing models for
biological examples. During the discussions, a number of undergraduate learning assistants will
join Dr. Meiners. They’re there to help you understand what’s going on, so ask whenever you
have questions.

Physics 135 Winter 2011 3
Copyright Timothy McKay



Weekly Online Homework: You will have online homework due once a week. These assignments
will be done using the online homework system called “Mastering Physics”. You can purchase
access to this system online following instructions which will be posted on the Ctools site
(https://ctools.umich.edu/portal). Mastering Physics assignments are typically due on Monday
mornings.

Exams: We will have three exams and a final during the term. Like the questions we will do in
discussion and on daily homeworks, these will include a mix of quantitative problems and written
explanations. Two practice exams, along with their solutions, will be provided for each of the
midterms and the final. Each exam will be partially multiple choice (and machine graded), and
partially written out (and hand graded). Any questions about exam grading will be handled by
filling out the exam regrade request available on the course web site and returning the exam,
along with the form, at the Physics Student Services Office in Randall Lab.

Optional Supplementary Problems: Many students ask for additional problems to practice with. If
you’re looking for this, you may also find it useful to purchase the Schaum’s Outline of College
Physics. This is a very cheap, basic book which will give you another look at many of the topics
we’re covering, and includes a lot of example problems which may provide useful practice for
you. It should cost ~$15 purchased online, and you can also get it at the local bookstores. Here
are some details:

0 Publisher: McGraw-Hill; 10 edition (November 15, 2005)
0 |ISBN-10: 0071448144
0 ISBN-13: 978-0071448147

In addition, every introductory physics text you come across will provide a useful overview of
many of the topics we will study. If you or a friend has one, feel free to use it; you may find it
helpful. For example, you can consult the Physics 140 textbook: University Physics, 12"edition.
This is all completely optional.

Course grades

Grades will include contributions from all of the above components:

Daily homework 5%

Lecture i>clicker responses: 5%

Weekly online homework: 15%

Discussion i>clicker responses: 10%

Midterm exams 15% each and Final exam 20%

Grading: grades will be assigned on a fixed scale, so it’s perfectly possible for everyone to get A’s. As a
rule, students who put in all the effort we expect rarely fail to get A’s or B’s. This is the scale we’ll use:

e 87-100%: A

o T77-87%: B
o 62-77%: C
e 45-62%: D
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If the median score in the course ends up significantly below 77%, we will lower the grade scale to ensure
that half of the students receive A and B grades. You should note that fully 35% of the final grade is given
for elements which require extensive effort rather than extraordinary brilliance. Do all your daily
homework, come to class and participate, and complete all your Mastering Physics work, and you will
receive almost all of this credit. If you do that, you will likely learn all you need to do well on the exams.
In any case, all this work will make it nearly impossible for you to fail.

Course expectations

The only way to learn physics is to do it. We know we’re repeating ourselves, but that’s the point. As a
result, we expect each of you to personally participate fully in the course. This means:

e coming to every class (well, almost every class, things happen)

e participating fully while you’re there

e reading the assigned material in advance of lecture

e doing the short daily homework assignments

o working all of your online homework until you get it right

o working through practice exams in advance of the real ones

e visiting with us during the many office hours we will spend in the Physics Help Room
o asking for help when you need it, and taking advantage of it when it is offered

Other sources of help

You may want to sign up for a study group organized by the Science Learning Center. Many students find
these to be an effective, efficient way to learn. SLC study groups put you together with a group of
students from this course, and provide a more advanced undergrad as a coordinator. If you don’t know
other students in the class, this can help to connect you with a group you might study with. You can learn
more about the SLC here:

http://www.Isa.umich.edu/slc

The Physics Help Room was created to help students who are taking Introductory Physics classes. It is
located in 1416 Randall Lab. The Help Room is staffed by a combination of advanced undergraduate
students, GSI's who teach the introductory labs, and faculty who teach introductory courses. All Help
Room staff are able to answer questions from any physics class. The Help Room is open Monday
through Friday. The hours are 10 am to 6 pm Monday, Tuesday, and Thursday and 10 am to 5 pm Friday,
and 10 am to 4 pm on Wednesday, when it closes for the department colloquium.

Honors Supplemental Study Groups

Understanding life’s mechanisms, the physics of life, is at the core of an enormous body of current
research. Physics 135 and 235 will provide you with a solid introduction to the physics of life, but there is
limited time in these classes to explore the myriad applications of physics to how life works. For this
reason, we offer especially interested students an opportunity to augment the class through participation
in a Supplemental Study Group, or SSG.
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This SSG will involve extending our study of the Physics of Life beyond the standard course material and
into the current scientific literature; journals like Science, Nature, PLOS One, PNAS, and the Journal of
Experimental Biology. By digging into the literature, you will gain a much richer understanding of the
connections between physics and life, learn something about how the scientific literature works, develop
new research skills, and yes, hopefully improve your performance in Physics 135.

Students doing the SSG will learn to access, search, and decode the scientific literature in a number of
areas, including biomechanics, experimental biology, bioengineering, aquatic biology, physiology,
biostatistics, ecology, marine biology, etc. SSG activities will center around multi-week structured
exercises meant to introduce you to the scientific literature, how to read it, and what a wild variety of
things it contains.

Your work in the literature will be closely connected to material discussed in the ‘regular’ course, and
should improve your understanding of that material. Each activity will involve some reading, thinking,
calculation and analysis, writing, and revision. You will also be presenting your findings to the other
members of your SSG. The meetings held during exam weeks will be dedicated to exam review rather
than literature research.What is required of you, and what will you get out of it?

Your contribution to the SSG includes attending a meeting once every week beginning in the third week
of the term for two hours, then completing individual assignments between these meetings. The extra
work you will be asked to do for the SSG should take a few hours a week. We will ask you to sign an
agreement saying that you will participate through the term. This is a very student driven thing, and won’t
work unless the participants are committed.

You can change your mind and ‘drop’ the SSG without penalty up to the regular course drop/add
deadline. If you stay in the SSG and fail to complete the work in a minimally acceptable way, there is a
penalty: your grade in the regular course will be reduced by 10%. We do not expect this to happen, but
include it as part of the system to make it clear that earnest participation is needed to make this a success.

Meetings will be run by advanced undergraduates who have taken Physics 135 and 235 in the past, led by
SSG coordinator David Chapel. They all have experience leading student groups and are sure to do an
excellent job. The SSG process will be overseen by Professor Tim McKay, who created the 135/235
course sequence and is also Director of the LSA Honors Program. Information about how to sign up for
the SSG will be circulated during the first week of class. Space in SSGs is limited, and will be offered on
a first-come-first-served basis.

This Supplemental Study Group is open to all students in the class. Your letter grade in the course will be
determined exactly as it would if you did not do the SSG. So what do you get for doing it? The most
important benefit is the chance to learn more about the connections between physics and life, and to
explore these in directions dictated in part by your own interests. But there is official recognition as well.
Satisfactory completion of the tasks outlined above will add an honors designation to the course: an “H”
will show up next to the course on your transcript. If you are a student in the LSA Honors Program, this
will allow the course to count as one of your honors courses. But everyone who completes the SSG will
receive the honors designation, whether you are currently in the honors program or not.
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Class schedule for Winter 2011

Meeting # Date Lecture title Pre-Lecture Reading Topics
1 Thursday Lecture #0: Physics Physics and Life
Jan. 6 and Life
2 Friday Discussion #0 Daily Homework #0 Spherical Cows
Jan. 7 and Scaling Laws
3 Monday Lecture #1: Tools for Chapter 1 Vectors:
Jan. 10 Mechanics Displacement,
Daily Homework #1 Force & Velocity
4 Tuesday Discussion #1 Tools for
Jan. 11 Mechanics
5 Thursday Lecture #2: Newton’s Chapter 2 Newton’s Laws
Jan. 13 Laws of Motion & Forces
Daily Homework #2 Friction
Free Body
Diagrams
6 Friday Discussion #2 Newton’s Laws
Jan. 14 & Free Body
Diagrams
Monday MLK Day-Class Does
Jan. 17 Not Meet
7 Tuesday Discussion #2.5 Newton’s Laws
Jan. 18 & Free Body
Diagrams Il
8 Thursday Lecture #3: Standing Chapter 3 Tension
Jan. 20 Up and Staying Still Force
Daily Homework #3 Transmission
Simple Machines
Definition of
Torque
9 Friday Discussion #3 Pulleys
Jan. 21 Simple Machines
Calculating
Torques
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10 Monday Lecture #4: Rotational Chapter 4 Torque &
Jan. 24 Equilibrium Rotational
Stress and Strain Daily Homework #4 Equilibrium
Stress and Strain
11 Tuesday Discussion #4 Rotational Statics
Jan. 25 Elastic Properties
of Materials
12 Thursday Lecture #5: Friction Chapter 5 Static Friction
Jan. 27 Kinetic Friction
Daily Homework #5
13 Friday Discussion #5 Friction in Statics
Jan. 28
14 Monday Lecture #6: Chapter 6 Position, Velocity
Jan. 31 Kinematics-Describing & Acceleration
Motion Daily Homework #6 Graphs of
X-t, v-t & a-t
15 Tuesday Discussion #6 Describing Motion
Feb. 1 With Kinematics
16 Thursday Lecture #7: Dynamics Chapter 7 Momentum
Feb. 3 and Fluid Friction Newton’s 2" Law
Daily Homework #7 Fluid Friction
Thursday Exam #1 Evening Location and
Feb. 3 Time to be
Announced
17 Friday Discussion #7 Newton'’s 2" Law
Feb. 4 Fluid Friction
18 Monday Lecture #8: Changing Chapter 8: 8.1-8.3 Curved Paths
Feb. 7 Direction — Circular Circular Motion
Motion Daily Homework #8 Parabolic Motion
19 Tuesday Discussion #8 Newton'’s 2" Law
Feb. 8 & Circular Motion
20 Thursday Lecture #9: Changing Chapter 8:8.4-8.5 Projectiles
Feb. 10 Directions — Ballistic
Motion & Projectiles Daily Homework #9
21 Friday Discussion #9 Projectile Motion
Feb. 11 Bear Hunting!
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22 Monday Lecture #10: Kinetic Chapter 9 Work
Feb. 14 Energy-How Much Kinetic Energy
Motion Do You Have? Daily Homework #10 The Work-Energy
Theorem
Power
23 Tuesday Discussion #10 Work and Energy
Feb. 15
24 Thursday Lecture #11: Potential Chapter 10 Gravitational
Feb. 17 Energy-How Much Potential Energy
Motion Could You Get? Daily Homework #11 Elastic Potential
Energy
25 Friday Discussion #11 Gravitational and
Feb. 18 Elastic Potential
Energy
26 Monday Lecture #12. Collisions Chapter 11 Impulse and
Feb. 21 Changing
Daily Homework #12 Momentum
Momentum
Conservation
27 Tuesday Discussion #12 Collisions
Feb. 22
28 Thursday Lecture #13: Chapter 12 Simple Harmonic
Feb. 24 Oscillation Around Motion and
Equilibrium Daily Homework #13 Resonance
29 Friday Discussion #13 Oscillations
Feb. 25
February 28--March 4. Winter Recess--Class Does Not Meet
30 Monday Lecture #14: Energy Chapter 13 Temperature
March 7 and the Atomic Kinetic Energy
Picture of Matter Daily Homework #14 and Ideal Gases
31 Tuesday Discussion #14 Gas Kinetics
March 8
32 Thursday Lecture #15: Random Daily Homework #15 Fundamental
March 10 Processes and Ideas of
Inevitable Conclusions Statistical Physics
Thursday Exam #2 Evening Location and
March 10 Time to be
Announced
33 Friday Discussion #15 Statistical Physics
March 11
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34 Monday Lecture #16: Chapter 14 Diffusion and
March 14 Microscopic Transport Osmosis
in Life Daily Homework #16
35 Tuesday Discussion #16 Diffusion and
March 15 Osmosis
36 Thursday Lecture #17: Thermal Chapter 15: 15.1-15.3 Heat Capacity
March 17 Properties of Liquids Thermal
and Solids Daily Homework #17 Expansion
37 Friday Discussion #17 Thermal
March 18 Properties of
Materials
38 Monday Lecture #18: Staying Chapter 15: 15.4-15.5 Conduction
March 21 Warm Convection and
Daily Homework #18 Radiation
39 Tuesday Discussion #18 Thermal
March 22 Transport
40 Thursday Lecture #19: Life and Chapter 16: 16.1-16.3 Formation of
March 24 Random Processes: Structure
Something From Daily Homework #19 Processes
Nothing? Cycles and the
Flow of Energy
41 Friday Discussion #19 Thermal
March 25 Processes and
Energy Flow
42 Monday Lecture #20: Keeping Chapter 16: 16.4-16.6 Thermodynamic
March 28 it going — processes Cycles
and cycles Daily Homework #20 Heat Engines
Entropy
43 Tuesday Discussion #20 Thermodynamics
March 29
44 Thursday Lecture #21: Life in a Chapter 17: 17.1-17.2 Hydrostatic
March 31 Fluid Pressure
Daily Homework #21 Pascal’'s Principle
and Atmospheric
Pressure
45 Friday Discussion #21 Hydrostatics
April 1
46 Monday Lecture #22: Life in a Chapter 17: 17.3 Buoyant Forces
April 4 Fluid: Buoyancy & Hydrostatic

Daily Homework #22

Pressure
Archimedes’
Principle
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47 Tuesday Discussion #22 Buoyancy
April 5
48 Thursday Lecture #23: Lifein a Chapter 17: 17.4-17.6 Surface Tension
April 7 Fluid: Surfaces Surfactants
Daily Homework #23 Bubbles & Drops
Capillary Action
Thursday Exam #3 Evening Location and
April 7 Time to be
Announced
49 Friday Discussion #23 Surface Tension
April 8 and Its Effects
50 Monday Lecture #24: Flowing Chapter 18: 18.1-18.3 Bernoulli's
April 11 Fluids Including Some Equation
Reality Daily Homework #24 Shear and
Viscosity
51 Tuesday April Discussion #24 Flowing Fluids
12
52 Thursday Lecture #25: Chapter 18: 18.4-18.6 Reynolds Number
April 14 Turbulence and Viscosity
Mixing Daily Homework #25
53 Friday Discussion #25 Laminar &
April 15 Turbulent Flow
54 Monday Lecture #26: Final Daily Homework #26 Summing Up and
April 18 Lecture Looking Ahead
55 Tuesday April Discussion #26 Final Exam
19 Review Problems
Friday Final Exam Location to Be
April 22: Announced
7:30-9:30 PM
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1. Physics and life
1) Introduction to the course: life is physical
2) Three examples to set the stage
i. Modeling and the scaling laws
ii. Physical constraints and convergent evolution
iii. Diffusion and the sizes of things
3) Differences among the sciences and how you study them
4) Tools for this course
i. Volume and surface area
ii. Specific and total quantities: density and mass
iii. Trigonometry and essentials of calculus
iv. Orders of magnitude and scientific notation
v. Estimation
vi. Units of time, space, and mass; questions of scale
vii. A universe made of atoms
5) The natures of things: scalars and vectors
i. Anexample: the displacement vector
ii. Vector addition
iii. Rescaling: multiplying vectors by scalars
iv. Vector subtraction
v. Component notation: addition, subtraction, and equality
vi. Choosing a thoughtful coordinate system
6) Decoupled motion and vector components: relative velocity
7) Multiplying vectors by vectors: the scalar and vector products
8) Life’s media: air and water

Physics for the Life Sciences: Chapter 1

1.0 Physics and Life

This book is intended for those who would like to understand life. It is especially well suited for those
who aspire to one day add to our knowledge of life; for researchers in the life sciences.

One of the great achievements of 20" century science was to begin revealing the fundamental
mechanisms of life. As these revelations emerged, the life sciences expanded from their traditional
domains in biology to include chemistry, physics, mathematics, and engineering. The purpose of this
book is to help you explore some very foundational elements of physics, especially those most important
for understanding life. In it, you will learn some of the laws of physics and discover how they enable
everything that life does. You will also see how the boundaries of biodiversity are defined by the
constraints physical laws place on life.

This text is meant to support a year-long exploration of physics as it pertains to life. During this first half,
we will focus on mechanical and thermal aspects of life, including the fluids in which we live and of
which we are largely made. Here are some of the many questions we will address.

e How does the inexorable pull of gravity affect the sizes and shapes of organisms? What must they
do to move around?
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o How does inanimate matter apply forces? How can we predict what these forces will be?
How do organisms use membranes, muscle, tendon, and bone to support themselves, get up and
move about?

e How do people walk, birds fly, and squid swim?
Why does it take so much effort to jog along at a constant speed? Why haven’t organisms
evolved wheels to make this easier?

e What is energy, and how do organisms take energy from or give energy to an object? What forms
can energy take?

e What is temperature and thermal energy? How does life harness purely random thermal motion to
get things done?
How do organisms manage to survive winters and live in cold oceans?

e How do living things get along within life’s media: air and water?

In the second half of the course, we will learn about several new aspects of the physics important for life:

o How do electrical forces give matter its strength? How does a watery environment enable life to
build, manipulate, and break up large molecules freely?

o How does life send signals within an organism? Electric fields and potentials, electric currents

and circuits, electricity and magnetism, the function of nerve cells.

How do living things sense the world around them? Sound and light, imaging and detection.

How can we extend our senses? Instrumental imaging.

What is life built of? The elements, nuclei, radiation, and the origins of these.

What conditions does life require, where do we find these in the universe, and why is finding life

beyond what we see here on Earth so challenging?

Introduction to the course

Science is a great human endeavor. For centuries, millions of people have worked together to expand our
collective understanding of what things make up the world and how those things interact. To explain,
scientists seek consistent patterns in what they find and how things work; laws of nature. These laws are
both proscriptive and restrictive. They tell us what can happen, but they also provide constraints on the
possible. All the laws of science are provisional. By the time we call them laws they have been widely
tested, but each remains open to revision.

These days, more than 350 years after Galileo’s death, science has become a broad, complex endeavor.
People speak of “the sciences”, and include among them subjects like biology, chemistry, geology,
medicine, astronomy, and physics. The long list gives an exaggerated impression of segregation among
these fields. It is true that the focus of study, and often the methods adopted, vary from field to field. But
much more unites the sciences than separates them. All rely on the same basic notion; that everything
comes about as the consequence of a limited set of laws which govern what can happen. These are not
laws of physics, or of chemistry, or of biology. They are not principles which you study in one class just
for that class, or just to please your professor. They are laws of nature: unchanging, universal, and
inescapable.

The particular focus in this course will be “physics”. In the past, this word had the broadest meaning; it
meant simply “natural science”. The subject was everything in nature. At the time, most people believed
there was much more to the world than nature. This super-natural world was the topic of “meta-physics”.
From a very early time, astronomy was considered separate. The precision and permanence observed in
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the stars and planets seemed completely unearthly. This strange perfection suggested an utterly different
reality, and astronomy was held apart from earthly science. Newton was the first to suspect that the
heavens and the Earth might all obey the same set of laws. The last century of research has confirmed his
suspicion to an astonishing degree, and now we speak of a united “astrophysics”.

As time went on and the successes of science grew, other disciplines were defined, carving off corners of
the natural world for specialization. Chemistry first emerged around 1700, focusing on the elements of
matter, their states, and how they come together to form the compound substances. Still more recent is
biology; a term invented in 1802 by Gottfried Reinhold Treviranus, a German naturalist. Biology is
defined today as “the division of physical science which deals with organized beings or animals and
plants, their morphology, physiology, origin, and distribution”*. During the 20™ century some of the
divisions which had grown up between the sciences began to dissolve. The connective fields of
biochemistry, biophysics, physical biology, physical chemistry, chemical physics, mathematical biology,
and biostatistics are all pursued in academic departments with their own professional organizations and
dedicated journals.

Introductory science teaching has been slow to respond to this enhanced connection, often retaining a
narrow disciplinary focus. This text is an effort to catch up; to reveal some of the exciting connections
among the disciplines so important for the modern life sciences.

It is worth noting that biology is defined as a division of the physical sciences, as if to emphasize that
there is no fundamental distinction between physical and life sciences. In this course, we will treat the
suggestion that biology is “a division of physical science” in a deadly serious way. The most important
idea in this course is that life is the outcome of physical laws, and nothing else. There is no “spark of life”
which separates the animate and inanimate. Biology is not a subject apart from chemistry and physics, but
rather the most complex and interesting application of them.

This assertion may surprise you. It may conflict with beliefs you have long held, with what you have been
taught in the past, or with your gut feeling about things. This is good. Intellectual dissonance is the surest
sign that you’re in a position to really learn.

I’m not going to insist, or even ask, that you believe this assertion. Instead we will take it as a starting
point, a possibility worth thinking about and testing. During this class we will be learning some of the
laws of nature. In each case, we will examine this assumption; that life is shaped by and exists within the
constraints of purely physical laws. We will ask whether living things ever evade the limits these laws
place, as they might if life involved something beyond the physical; something metaphysical or
supernatural. We will also ask how the extraordinary diversity we see in life could come about as a result
of these physical laws.

There is one extremely important tool needed to understand the interplay between physical laws and life:
evolution. The idea that life evolves through natural selection of random variations provides our only tool
for understanding the diversity of life. Evolution has allowed life to find incredibly various and seemingly
ingenious ways to function. Working within the limits provided by physical laws, evolution will allow us
to understand why animals never acquired wheels, why cells are the size they are, why hummingbirds eat

! Oxford English Dictionary
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several times their weight in food each day, and why the largest animals which have ever lived all swim
in the sea.

What we’ll accomplish in this course will only scratch the surface of this profound and important topic.
But even a superficial look can teach you a lot about the inescapable unity between the physical and
biological worlds. At a minimum you should learn how physical laws constrain organisms, and with luck
this new understanding will change the way you think about life.

1.2 Three examples to set the stage

Let’s start with a few examples to illustrate how life has evolved to work around the limits placed on it by
physical laws. Let’s start with one of the most obvious connections: size and shape.

The Spherical Cow and Modeling

There is a famous joke about cows and professions; told in many forms over the years. A dairy farmer is
having trouble making ends meet, and hopes to find a way to enhance the productivity of her farm. For
reasons lost in the mists of time, she calls in a psychologist to help.

The psychologist conducts a series of interviews with the farmer, her family, and the cows, and records
their reactions to a variety of visual stimuli. In the end, he tells the farmer “Your cows are suffering from
Ruthvenian post-lactic stress disorder. To enhance their productivity requires a more nurturing climate.
Paint the walls of the barn a cool, neutral color, provide them with quietly energetic music, and be sure to
give them a daily shiatsu massage.” This doesn’t work. Indeed the cows become very relaxed, but this
only makes them rather harder to milk.

Next she turns to a biologist, who sends a graduate student to take cell cultures from inside each cow’s
mouth, has a team of lab technicians extract their DNA, and uses a room full of capillary electrophoresis
machines to sequence it. His report to the farmer suggests supporting a new research program to splice the
DNA of a Minke Whale into the cow, allowing them to grow much larger, produce more and richer milk,
and not wander about the farm so much. The Minke Whale, after all, has the richest milk of all mammals.
The farmer, imagining the bad press that would accompany this Franken-milk, politely thanks the
biologist and sends him on his way.

Finally, the farmer calls on a physicist. Unlike the others, the physicist doesn’t examine the cows or
consult the farmer’s family at all. Instead, she goes to the chalkboard, draws a large circle, says: “Assume
each cow is a sphere” and begins to construct a quantitative, predictive model on the board...

The point of this joke, like so many, is to illustrate partial truths. Psychologists do look for answers in the
minds of their subjects. Biology has found genetic research incredibly fruitful. And physicists achieve
much of their success by building simple mathematical models. To motivate this seemingly strange
approach, let’s see where we can go with this “spherical cow approximation”, which we will refer to from
now on as the SCA.

If a cow were a sphere, life would be simpler. A spherical cow, unlike a real one, has a shape fully
described by a single number; its radius. Tell me the radius of a spherical cow, and | can quickly calculate

both its volume (%ﬁrs) and its surface area (4 r?). For a real cow, with its complicated shape,
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calculating volume and surface area is hard to do. What’s the formula for the volume of a cow given its
height at the shoulder h? There isn’t one. It’s much easier to work with a spherical cow. But although
these SCA answers are easy to calculate, they’re also obviously wrong. | don’t expect to precisely predict
the mass of a cow from the SCA. What use is a model so simple that it ignores the shape of a cow? As it
turns out, there are many things that such a model can accurately predict.

What would happen if | changed the size of a cow? How would its volume and surface area change?
Without a model, we could only do the experiment: grow a big cow and measure it. But given the SCA,
we can predict what will happen. For our sphere, volume is related to radius through the equation

\Y =§7er. If we double the size of r, the volume increases by a factor of 23, or 8. We can also predict
how the surface area ( A, = 471*) changes: doubling the size will increase surface area by a factor of

2% or 4.

Why might the farmer care? Milk production probably varies with volume. Doubling the size of the cow
would yield 8 times as much milk. But what if she’s really out to make leather? Doubling the size of the
cow would yield 4 times as much hide. Now of course there are other implications of size. The amount of
food and oxygen an organism needs is largely governed by mass. Each cell must be kept alive, and more
mass means more cells. So doubling the size of a cow increases its food needs by a factor of eight! A
farmer out to make leather would, as a result, generally prefer a lot of small cows to a few big ones. Each
would have a relatively large surface area to volume ratio, and hence would produce leather relatively
cheaply.

There is another way we might use this model. It allows us to predict how the surface area of an organism
ought to vary with its volume. Deriving this is simple. First use the equation for volume to find the radius
as a function of volume, then insert this into the surface area equation:

[3v
r =3 —
4
Ao = 4712 = (47)* BV

This model leads us to suspect that surface area should be proportional to volume to the 2 power. This

relation, derived here for spheres, should apply to any organism that stays the same shape as it changes
size. One good example is provided by a salamander called the dwarf siren (Pseudobranchis striates)
which lives in the Southeastern United States. As it grows, it retains very much the same shape, providing
a nice test of this model. Measurements of how its surface area varies with volume show, shown in the
Figure below, illustrate just the relation we expect from this SCA'.

We will make use of this and many other simple mathematical models of things, both living and not quite,
often in this class. They will allow us to extract important facts from all the specific complexity of real
biological circumstances. This kind of quantitative but clearly approximate modeling plays an important
role in understanding life. We will return to it again and again in our efforts to understand the essentials of
how physical laws enable and constrain life. We should note right from the start, however, that this
approach can be perilous. Sometimes when we abstract out the details we lose the substance. Care,
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caution, and an element of humility all play important roles in the generation of accurate and useful
models.
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Surface area vs. mass relation for the Dwarf Siren salamander

Convergent Evolution

Evolution, through random variation and subsequent selection of successive generations, allows life to
find strikingly effective ways to work within the limits placed by physical laws. A beautiful example of
this in action is provided by “convergent evolution”. When physical laws present a difficult problem for
life, there are sometimes very few workable solutions. When this is so, the same solutions are often
arrived at over and over, completely independently, during the course of evolution. While there are many
examples of this which we will encounter in this course, perhaps the most visible, well documented, and
delightful, is flight.

We all know what happens when we leave an object of any substance unsupported in the air: gravity pulls
it to the ground. Sometimes the friction it feels when moving through the air slows its fall, but in the end
what goes up must come down. To achieve the marvel of flight, to remain in the air for an extended
period, climbing and diving at will, you must be able to generate forces large enough to overcome the
gravity which pulls you down. As we will come to see later, when you want something to push up on you,
you need only push down on it. Alone in the air, the only thing to push down on is the air itself. If you
want to push hard on air, you need to push with something big; something like a wing. You can make
flight easier by being as light as possible; reducing how hard gravity pulls you down. The best solution is
clear: combine big wings with a body made as light as possible.
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Life, through evolution, has found this solution at least four completely independent times, among the
insects, reptiles, birds, and mammals. In each case the solutions are strikingly similar: large, thin, flexible
wings attached to bodies with many adaptations designed to reduce weight.

Insects might seem an exception to the focus on reducing weight. After all, a big fat June Bug flies along
just fine. How can this be? Recall the SCA. The volume of a creature increases like size®, while the
surface area increases like size”. So long as shapes remain the same, the ratio of mass to wing area
(volume to surface area) changes like size® / size?, or like size. The bigger a flier is, the more important it
will be for it to limit its weight and increase the relative size of its wings. The largest fliers, birds like
condors and cranes, have quite enormous wingspans and surprisingly small masses. The California
Condor has a wingspan of nearly three meters, but as mass of only about nine kilograms.

Insects live at the low end of this tradeoff, where the benefits of reducing weight are really not important.
So there are lots of chubby insects, from beetles to bumblebees, which can still fly. Why are insects
always pretty small? It turns out their sizes are not limited by the constraints of flight at all. We’ll see
what keeps them small in a moment. Throughout this course, we will see many other examples of
convergent evolution; in the shapes of swimmers, the structures of eyes and ears, and in the ways in
which organisms insulate themselves and prevent heat loss.

Diffusion and catching your breath

Most of the motion we associate with life seems willful: you throw a ball, a bird flaps its wing, a snail
crawls across the floor. But one kind of motion, incredibly important for life, clearly doesn’t require will:
it just happens. This is transport on the molecular scale: what we would generally call “diffusion”.

Imagine a rectangular box divided in two. The left hand side is filled with Nitrogen gas. In it huge
numbers of N, molecules fly freely through space, colliding occasionally with one another or the walls.
The right hand side is completely empty; a vacuum. Now suppose we remove the dividing wall. What
will happen? Some of the molecules which would have hit the divider and bounced back will now just
continue into the empty side, eventually reaching the far wall and bouncing back. After a while (a very
short while indeed in this case) there will be essentially equal numbers of molecules on both sides of the
box.

How did this happen? Did anyone decide to push those molecules across and make them spread out
evenly? This kind of motion, which just happens as a result of random thermal motion, is called
“diffusion”. It happens because atoms and molecules are always moving with speeds that depend on their
temperature. If you give things which rattle around randomly a chance to spread out, they will. Not
because they want to, or because anything is pushing them; just by chance.

How does life use this? When it comes time to deliver a whole mess of stuff (like a mouthful of food or a
big gulp of air) simple pushes and pulls will do the job. But if you need to deliver individual molecules to
where they’re needed, our familiar forces don’t work; no tool you have can grab a single molecule and
push it around. On this scale diffusion has to take over. Let’s take a basic example: getting oxygen
molecules into a cell. Imagine you put some air next to a cell. There will be oxygen in the air, and let’s
assume there is no oxygen inside the cell. If the cell membrane allows oxygen to pass through, then when
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oxygen outside the cell hits the wall it will pass through. It will continue to build up inside the cell until
there is, on average, just as much flowing out as flowing in.

How fast does this diffusion process happen? The rate depends on a number of things, including how
much oxygen is on one side and the other, the temperature of the stuff on both sides, how much surface
area there is to diffuse through, and how permeable the membrane is. A key factor here is surface area.
Remember, the amount of oxygen something needs depends on its total volume, which changes like size®.
The amount of oxygen it can absorb through diffusion depends on surface area, which changes like size’.
So in our SCA, the amount of oxygen available for each little bit of an animal should change like surface
area / volume, or like size™. This sounds like a losing game. The bigger you get, the less able you are to
supply oxygen to your cells. As organisms get larger, it should become harder and harder for them to
deliver oxygen to their cells.

How has evolution gotten around this limitation? The answer is to break the spherical cow approximation.
A key part of the SCA is the assumption that when things change size, they stay the same shape. Our
spherical cow is always a sphere. We call this kind of change in size “isomorphic”, meaning keeping the
same shape. Evolution has overcome the challenges diffusion imposes by changing shape while changing
size, and doing this in ways which make the surface area for oxygen exchange increase more rapidly than
it would in the SCA.

For most “big” organisms, this is done by developing gills or lungs. Your own lungs, for example, are a
spongy mass of more than a half-billion tiny sacks called alveoli. Their total surface area is around 100
square meters. Is this big? You’re about 2 m tall and 0.3 m wide, so your surface area (in skin) is perhaps
1.2 m?. By growing complex, spongy lungs, your body increases the available surface area for oxygen
diffusion by a factor of 100, easily enough to let you grow big. Fish do the same trick by growing gills;
huge numbers of very thin feathery sheets they expose to oxygenated water. If you wanted to deliver
oxygen to your cells more directly, without the complication of squishy, disease-prone lungs, you’d have
to be about 100x smaller. That would make you 2 cm tall; about the size of a cricket.

In the end, this is why insects have never become large. They mostly deliver oxygen directly to their cells
through a system of narrow tracheal tubes. This system acts almost entirely through diffusion, and doesn’t
allow them to really change shape while changing size. As a result, it provides one fundamental limit to
the size of insects. Without something like lungs, they cannot grow much larger.

These three examples — modeling size and shape, thinking about convergent evolution, and seeing the
constraints of diffusion — should give you a good flavor for how we will approach the application of
physics to life in this course.

1.3 Some differences among the sciences and how you study them

Many of you will take courses in a variety of different sciences while preparing for a career. There are
superficial aspects of practice in each discipline which combine to make physics, chemistry, and biology
seem very different, obscuring the connections among them. There is one in particular you might want to
watch out for from the very beginning.

Biology and chemistry make extensive use of unique, specially invented terminology, often derived from
Latin or Greek. This choice of ancient languages preserved in part to support this penchant for specific
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naming, makes clear the desire to avoid using “everyday” language for the naming of things. Specific
names are adopted to emphasize as clearly as possible the differences among things, and to stress for
example the distinction between deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). A significant
part of the study of biology and chemistry is dedicated to learning all this terminology

Physics, by contrast, tends to focus on describing things in the simplest possible way. In so doing, it often
picks up terminology from everyday life for use in its theoretical framework. Examples of physics terms
include the normal force, friction, work, energy, force, action, pressure, tension, stress and strain, the big
bang, the standard model, and string theory. Using this kind of language is nice because it helps to avoid
the possible obscuring effects of unfamiliar terms. It can also be treacherous, because these familiar
words bring with them everyday meanings different from those used in physics. To overcome this pitfall,
you have to be particularly careful to notice when familiar words are adopted in physics with much more
particular meanings. We will try to point this out, but you have to heighten your sensitivity to it as well.

There is another feature which tends to distinguish introductory physics courses from those in the other
sciences. In this course, we will introduce you to a relatively small number of principles, and then ask you
to apply them in a wide variety of situations. There is little to memorize, but much to practice. Rather than
being asked to replicate things you have been told or shown, a physics course will ask you to apply
principles you have learned in new ways. For example, you ought by now to be able to use the SCA to
decide whether objects falling a long way through the air fall faster or slower when they are large.

1.4 Tools and skills for this course

To apply the laws of physics, there are a number of basic principles of mathematics which you will use
regularly. The remainder of this first chapter provides a quick review of some of the most important.
These are all tools we will use extensively, and rather than remind you of them every time they come up
we’re going to put them all here.

Volume and Surface Area

There are many simple shapes for which volume and surface area can be simply expressed:

Shape Surface Area Volume
Cube of edge length L 6L° L®
Sphere of radius R 4nR? 4rR%/3

Cylinder with radius R and

2, 2
length L 2nR° + 2nRL nRL

For other shapes, like a wombat or an automobile, simple formulas for surface area and volume don’t
exist. Remember the SCA though; there are scaling rules which always apply. If you change the size of an
object, keeping the shape the same, the surface area will increase like the size? and the volume will
increase like the size®. You can see this is true in the above trivial examples, and you can extend it to any
shape you like by imagining the shape constructed of tiny cubes.
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Trigonometry and the Pythagorean Theorem

As we discuss various geometric properties such as size, shape, motion, etc., you will have to use
trigonometry in many basic ways. Here are the essentials which would be ready to apply. Given a right
triangle with sides that have length A, B, and C, we can write the following:

A? +B?=C?
C 5 sin6 = B/C = opposite/hypotenuse
0 cosb = A/C = adjacent/hypotenuse

tan6 = B/A = opposite/adjacent

People often remember this with the mnemonic “SOHCAHTOA” (for sine = opp/hyp, etc.), and you may
find that useful too. Here’s another useful thing to recall: angles can be measured either in radians (which
run from 0 to 2x) or in degrees (which run from 0 to 360). You’ll need to be careful about which you’re
using with your calculator, especially when inverting trigonometric functions to solve equations like

sin(6)=0.45
0 =sin™(0.45) = 26.74° = 0.467 radians

Some basic calculus

Calculus is a branch of mathematics dedicated to describing change. Physics is all about change; not
about how things are, but about how they change. Calculus was invented, in large part by Newton and
Leibnitz, as the central tool of physics. As a result, any serious understanding of physics requires
reference to calculus. This course does not, however, require a very elaborate application of calculus. So
while we will very often include the ideas of calculus in what we discuss, you won’t have to deploy the
many methods of calculus very often.

You will need to understand that derivatives of functions describe their rates of change (their slopes), and
that integrals of functions describe areas under them. We will do some simple calculus derivations
occasionally, and you should be comfortable with understanding them.

Intensive and extensive quantities

In our study of physics we will often speak of the properties of objects: their masses, electric charges,
forces applied to them, and so on. These quantities apply to particular objects. We will also often speak of
guantities which are properties of materials, rather than the complete objects of which they are made.

A familiar example of such a so-called ‘intensive’ quantity is density. The average density of an object
can be found by dividing its total mass by its total volume:
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Other examples of intensive quantities include electric charge density, temperature, elasticity, and
pressure. Intensive quantities will often vary in space, taking on different values at different locations.
The density of an object, for example, is determined by what it’s made of. Most living things (like you)
are made of a mix of things (muscle, bone, brain). As a result, your density varies from place to place
inside your body. Nevertheless, most animals are mostly made of water, so often you’re not too far wrong
if you use the density of water to estimate the density of an animal. Conveniently, water has a memorable
density of about 1000 kg/m?®.

How could you use this to estimate your mass? There’s no formula to get your volume from your height.
So let’s estimate it by imagining you’re a cylinder, say 1.8 m high and with a radius of 10 cm (about 4
inches). This would give us a volume of 0.056 m® and a mass of about 56 kilograms. This is a nice
example of how an intensive property of a material (the density) can be used to find an extensive property
(the mass) of an object.

Estimation

This provides a nice introduction to the topic of estimation. We will often estimate things in this course.
Why not just be precise, use equations, and calculate exact answers? There are at least two different
reasons.

First, most of what happens in the world is incredibly complicated. This makes precise description, in the
form of a perfect, tidy equation, impossible. Fortunately, this complexity doesn’t leave us helpless to
describe or unable to predict what will happen. It simply means we will have to approximate; to construct
models which capture some of the most important features of the situation, while glossing over less
significant details. Our spherical cow is a great example of this. It doesn’t tell us the volume of a cow. But
it does give us an idea of how that volume changes as a cow grows.

There is another important reason to estimate. Even if we had a perfectly precise, tidy analytic theory, we
still may not perfectly know the parameters involved. For example, if we want to know the mass of a cow,
we may not know its precise height or length. We may not know its density or detailed shape. What’s the
density of a cow? How could you estimate this? Well, like most land animals, cows can swim, a little at
least. This means they can nearly float. This means their density must be close to the density of water,
which is one of those nice, useful, numbers you should just know...

It is very useful, and important, to learn to make quantitative estimates in situations where perfect
knowledge is absent. This appears in all arenas of life. If, for example, someone told you there were 5,000
piano tuners in Ann Arbor, should you believe them? Most of you have probably heard the five second
rule: “if you drop a piece of food on the ground and pick it up in less than five seconds, it’s OK to eat it”.
Is this nonsense or true? Why five seconds and not 2.5 or 10? What happens in five?

Units of physical quantities and their associated dimensions
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Quantitative description of anything implies measurement: comparison to some standard of reference.
Measurements discussed in this book will involve comparisons to just a few fundamental standards: time,
distance, mass, and electric charge. In each case we will use the units defined as part of the ‘Systéeme
international d'unités’. These are usually just called Sl units.

Time: seconds, currently defined as time required for a Cesium atom to vibrate 9,192,631,170
times

Distance: meters, currently defined as distance traveled by light in 1/299,752,458 second, about
3.28 feet

Mass: kilograms, currently defined as mass of a little cylinder kept in Paris, about 2.2 pounds in
more familiar units

Electric charge: coulombs, currently defined as the amount of electric charge contained by about
6.25x10"® electrons

Now anything you might measure, like a distance, or a time, might be measured in a variety of different
units. Time, for example, might be measured in seconds, or hours, or days. Some particular period of
time, 45 seconds say, actually has only one duration. We might measure it in many different units, but it’s
always really the same thing. To convert this one period from one set of units to another, we can take
advantage of conversion factors, multipliers which change units but have a numerical value of one:

45 seconds * (1 minute / 60 seconds) = (45/60) minutes = 0.75 minutes
45 seconds * (1 day / 86400 seconds) = (45/86400) days = 5.2x10™ days

Notice what we do in each case. Start with what you are given (45 seconds), then multiply by a
“conversion factor”; a ratio of two times that are equal to one another, but measured in different units.
Since the two are equal, the ratio is actually equal to one, and when you multiply by it, you leave the
original time period unchanged. What the conversion factor does, then, is to change the units without
changing the value of the measured quantity. Here are a few more examples:

1.8 meters * (100 centimeters / 1 meter) = 180 centimeters
56 kilogram * (1 pound / 0.454 kilogram) = 123.4 pounds
1 electron charge * (1 Coulomb / 6.25x10" electron charges) = 1.6x10™*° Coulombs

Since we will work with a variety of different units, you will need to develop some facility with doing
these conversions. Sometimes they will be more complicated. Let’s convert speed in meters per second to
miles per hour:

1 meter/second * (1 mile / 1609 meter) * (3600 second / 1 hour) = 2.24 mph

With time we often define non-standard units imposed on us by circumstance. For living things on Earth
the day governs one strong cycle of life, as does the year. These two essential units are unfortunately
incommensurate: we now define each year to be 365.25 days. People in their social relations define other
units, like the week. Our shorter time units, the second, minute, and hour, were originally defined in

Physics 135 Winter 2011 23
Copyright Timothy McKay



reference to the day. Of course these units, though convenient for us, could only be appropriate on the
Earth. They have no physically fundamental importance.

As we go through the class it may be useful to know how many seconds there are in a day or a year:
1 day * (24 hours / 1 day) * (60 min / 1 hour) * (60 sec / 1 min) = 86,400 seconds
1 year * (365.25 days /1 year) * (86,400 sec / 1 day) = 3.15x10’ seconds

Notice that this latter is very close to 7 x 107 seconds, which perhaps makes it a little easier to remember.
Once we start counting in years, interesting coincidences emerge, like the fact that a typical 50 minute
introductory physics lecture is just about 1 microcentury. Some lectures seem much larger, some much
shorter. You can make of that what you will.

So that’s what “units” are. What about “dimensions”?

When we ask what dimensions something has, we’re asking about what kind of a quantity we’re
measuring, not how we’re measuring it. Is it a distance, a time, a mass, a charge, or some combination of
these? Notice that this is different from asking about units. When we talk about units, we’re asking
something more specific. How are we measuring this? What is it we’re comparing this thing to? When we
talk of dimensions, we’re only asking about the nature of the thing we’re measuring, not the particular
system of comparison we use to measure it.

As it happens, there aren’t so many fundamentally different dimensions of measurement in physics. For
much of this course, we’ll need just four:

Length: L
Time: T
Mass: M
Charge: Q

Other quantities of interest are measured in terms of these. For example, speed has dimensions of length
divided by time (L/T), and density has dimensions of mass divided by volume (M/L®). Paying attention to
the dimensions of things is important. The dimensions of a thing tell you what it really is. While the units
can be changed by conversion factors, the dimensions cannot. There is no way to turn a length into a
mass.

Orders of magnitude and scientific notation

In discussing the physics of living things we will need to talk about some things very far removed from
everyday life. This will include objects ranging from the very small to the very large. In the spatial
dimension we will talk about things ranging in size from atoms (with a typical radius of 0.000,000,000,1
m) to the Earth (with a radius of 6,400,000,000 m). In time we will consider the time it takes two atoms to
bond (only about 0.000,000,000,001 s) to the age of the universe (more like 4,400,000,000,000,000 s). In
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mass, we will ponder both electrons (very light at 0.000,000,000,000,000,000,000,000,000,000,091 kg)
and, again, the Earth (a rather more massive 6,000,000,000,000,000,000,000,000 kg).

Dealing with a large range of scales is mentally challenging; grasping the large and small requires
enormous imagination. Fortunately, science has invented a tool, scientific notation, which provides
helpful crutch. It can be used to precisely discuss an enormous range of parameters in a tidy, concise way.
We will often use scientific notation and the Greek prefixes associated with it. The primary ones we will
use are:

Tera- 102  atrillion
Giga- 10°  anbillion
Mega- 10°  amillion
Kilo- 10®  athousand
Centi- 10%  1/100
Milli- 10°  1/1000
Micro- 10%  1/1 million
Nano- 10°  1/1 billion
Pico- 10"  1/1 trillion

So when we speak of a centimeter, we mean 1/100 of a meter, and when we talk about a kilogram, we
mean 1000 grams. You will have to always exercise care with these prefixes. They are the source of many
student errors. You don’t, for example, want to confuse micro and mega...

As our study of the universe has advanced, science has pushed these limits, and so there are now more
official prefixes than there used to be. Going up, the next few are Peta-, Exa-, Zeta-, and Yotta- (10",
10", 10%, and 10*), going down they are Femto-, Atto-, Zepto-, and Yocto- (107, 10, 10!, and 10%%).
These remain a bit specialized, but you should certainly know all the prefixes from Pico- to Tera- by
heart.

Notice that just about all of these are multiples of a thousand. The exception (Centi-) is useful because the
basic distance, a meter, is a quite a bit bigger than our hands, and many things we work with are the sizes
of our hands or smaller. The next scale down (the millimeter) is a little too small for everyday things. So
the occasional use of Centi- is an accident of convenience, a consequence of the size and focus of interest
of humans.

You will need to learn to manipulate these things, so if you are rusty with exponents, | suggest you review
them. Here are the basics:

10%* x 10° = 10** s0 (5 x 10% x (4 x 10%) =20 x 10"" =2 x 10*®
10* /10° = 10*® 5o (5x10% /(4x10% =5/4x10"=1.25x10"=0.125
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Scientific notation is a tool which allows us to talk about an enormous range of sizes, times, and masses.
There are about as many nanoseconds in a single second as there are seconds in your life; each is an
almost unimaginably tiny period. And yet physicists studying life now routinely produce pulses of laser
light which are "femtoseconds™ long. There are a million femtoseconds in each nanosecond, and hence
10", a thousand trillion, in every second. Scientific notation makes working with such enormous numbers
tractable, but it isn’t much help in our effort to more deeply understand them.

Each time you encounter the very large and very small, you should expend some imaginative effort on it.
Your body contains approximately 10*° cells. Each contains a complete copy of your genome, with all
2.85x10° base pairs. Among your cells, there are about 10** are neurons, connected to one another
through about 10™ synapses. The biggest neurons have masses of about 10 kilograms. Getting beyond
your own skin, there are nearly 7x10° people on the Earth. Putting these together, there are now about a
mole of neural synapses working on the planet. Wrapping your mind around numbers like these is
probably a life-long endeavor, and is surely one of the pleasures of learning science.

1.5 The nature of things we might measure: scalars and vectors

When we set about quantifying the world, measuring things about it, we discover that not all things can
be described in quite the same way. Many things we might like to measure are rather simple; they can be
represented by a single number. A baseball has a mass. Everything there is to know about the baseball’s
mass is represented by a single number: 5.25 “ounces avoirdupois”, or about 149 gm (according to the
official rulebook). It also has a circumference (officially “not less than nine nor more than 9 1/4 inches”,
or about 23 cm). Just one humber tells you everything there is to know about its circumference.

Physical properties which can be represented by just a single number are known as scalars. They are
quite common. In addition to mass and diameter, they might include temperature, density, pressure,
metabolic rate, pH, age, or even cost. All scalars properties can be fully described by just one number. We
sometimes say that scalars are properties of things which have only a magnitude.

Some things we want to measure, especially in physics, are more complex. If we want to describe the
wind for a sailor, it is not enough to simply provide its speed. To usefully describe the wind for a sailor,
we need also to provide its direction. Another quantity like this is a force. To fully describe a force, to tell
you everything you need to know about it, we have to give both its magnitude and its direction. There are
many examples in physics, including force, displacement, velocity, and acceleration. Later in the course
we will encounter electric, magnetic, and gravitational fields. All of these are called vector quantities.
Vectors are things which require us to specify both a magnitude and a direction to give a complete
description.

The point is to draw your attention to an essential difference. If you’re analyzing something and the
answer you seek is a scalar, you need only determine its magnitude. But if the answer to your question is
a vector, you will have to determine both its magnitude and its direction. Without providing both, you
cannot fully describe a vector.

Displacement as an example vector:
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Scalars are pretty familiar things, so they don’t need much further introduction. Vectors are considerably
less so, as they were invented for and are largely used in physics. So we will take some time to talk about
what vectors are and how we add, subtract, and multiply them.

Let’s take as our example a displacement; a kind of instruction for a trip. To describe a trip, we have to
say how far to travel, and also what direction to go. One way to do this is to specify the magnitude of the
vector, and describe its direction by measuring an angle relative to some reference direction. Here’s an
example; you receive an instruction telling you to travel 30m in the direction North-East.

We could represent that trip graphically as a little arrow that looks like this.

What does this graph represent? Each of the axes represents position. The horizontal axis measures how
far East or West you are from the (arbitrarily selected) origin, while the vertical axis measures how far
North or South you are from this same arbitrary origin. The solid arrow shows a displacement “30m in the
NE direction”. The dashed arrow also shows a displacement “30m in the NE direction”. Since these two
displacement vectors have exactly the same magnitude and direction, they are precisely equal to one
another. This is an important point. Vectors are not tied to particular points in a space. They don’t say go
from this particular spot to that; they just tell you how far to go and in what direction.

The reason for this is actually rather deep. The way things move can’t be affected by how we choose to
draw our coordinate system. If they were we could never know what was going to happen until after we
defined a coordinate system. Displacement vectors like these will prove very useful in describing physics,
and to be physically meaningful they have to be independent of particular starting and ending points.

There are a few small subtleties to consider. Usually, we will describe a displacement as having a positive
direction: for example 10 meters North. Occasionally, it is convenient to speak of vectors with negative
magnitude. Doing this implies that the vector has a direction opposite the one stated. So if we spoke of a
vector which has a magnitude of -10 meters in the North direction, it would be identical to a vector with
magnitude +10 meters in the South direction.

Displacement is the archetype of a vector. In this text, we will denote vectors by using boldface, so that
while s might be a distance, s is a vector. Another way to denote vector quantities is to draw the
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appropriate symbols with little arrows over them, so we might use the symbol S * is a displacement
vector.

Adding and subtracting vectors

There are several ways we might want to manipulate vectors. The first is addition. Why might we want to
add vectors? If we take two trips, we undergo two displacements, and the sum of the two is equivalent to
taking some other single trip. Likewise, the sum of two forces is the same as a single equivalent force. So
adding vectors really amounts to finding a single vector which is the equivalent of the combination of
several other vectors.

Rather like scalars, the sum of two vectors a and b is equal to a single third vector, ¢, which is equivalent
to doing a then doing b. So we can plausibly write:

a+b=c

The order doesn't matter, which if you remember your fifth grade math, implies that vector addition has a
property called commutativity:

c=a+b=b+a

In the figure we see the first way to discover the sum of two vectors. This is called graphical addition, or
the “tip to tail” method. It relies on the fact that vectors are NOT tied to particular points; they only have
magnitudes and directions. Because of this, you’re free to move them around and line up the tip of the
first with the tail of the second.

Note that we could go a step further, and consider what happens if we add three vectors together:

at+b+c=d
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Notice from this example that the same resultant vector d is produced whether | take:
(@+b)+c or (b+c)+a

This different kind of independence from order is called associativity.

Multiplication of a vector by a scalar:

A vector is a quantity specified by both a magnitude and a direction. A "scalar” is something specified by
just a magnitude. So a distance "3m" is a scalar, and a displacement like "3m Northwest" is a vector. It is

possible to multiply a vector by a scalar. To do this we just multiply the magnitude of the vector times the
scalar number, leaving the direction unchanged.

v

Vector Subtraction:

Imagine | have executed a displacement. If | want to execute a second displacement which will eliminate
the effect of the first, what new displacement must | execute?

Just as
5+(-5=0
a+(-a)=0

where (-a) refers to a vector with the same magnitude as a, but the opposite direction, and O refers to a
“null vector” of magnitude zero. This suggests how we should do vector subtraction:

a-b=a+(-b)

which can be drawn graphically as:
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This emphasizes the fact that two vectors are equal if their magnitudes are equal, and their directions
equal. When this is so, you can add the negative of one to the other and obtain the null vector:

a+(-b)=0
Components of vectors, orthogonal motions:

A particularly illustrative example is the addition of two vectors which are perpendicular to one another.
In this case, simple rules of trigonometry can be used to find the magnitude and direction of the sum.

a’+b’=c?

—a 5 0 tan@=Db/a

This example suggests what turns out to be an extremely useful way of thinking about vectors. A vector ¢
can always be thought of as "made up of" the sum of two appropriate vectors a and b. We need only
require a + b = c. In this case, c is in every way equal to this sum. The two things, c, or a + b are exactly
the same. If we do this while requiring that a and b are perpendicular to one another this is called
"resolving ¢ into components”. We will do this very often with vectors; it makes many vector calculations
much simpler.

Very often, a notational simplification is also made. If I set up a simple x-y coordinate system, | can
define a "unit vector" for each direction. Each of these unit vectors points directly along the axis it
corresponds to and has a length of one in the units of choice; hence the name unit vector. Usually unit
vectors are written using the name of the axis, either as a bold vector or with a little “hat” symbol:

X unit vector = x (or X) y unit vector =y (or )

To talk about the unit vector in the x direction we would say “x-hat”. | can use these unit vectors to
rewrite the vectors above:
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Initially, breaking vectors into components doesn't seem like much of a help; why would we want to
replace one vector with two? Wouldn't that just complicate things? There are several reasons why this can
make life easier.

1. The first is mostly practical; it is often easier to work with vectors which are broken into
components than it is with the original vectors.

2. The second is somewhat deeper. It is often the case that the motion of an object along one
direction is completely independent of the motion along another; the physics of the problem
can "decouple" these two "orthogonal™ motions. When this is this case, it is often
advantageous to break vectors into components because this emphasizes the important
features of the motion, hence making it easier to understand.

Let’s see how component notation can simplify vector manipulation. Consider the following example of
the sum of three vectors. We’ll use the unit vector notation E for East and N for North.

Add three vectors:

a=5m East = 5E

b = 8m North = 8N

¢ = 6m 30° East of North = (6*sin30)E + (6*cos30)N = 3E + 5.2N
so the sum is:

a+tb+c=(5+3)E+(8+52)N=8E+13.2N

We can work out the magnitude and direction of this final vector in the way we did for adding
perpendicular vectors above:

Magnitude m? = 8% + 13.2 or m = 15.4m
Direction tan6 = opp/adj = 13.2/8 = 1.65
Or 0 = arctan(1.65) = 1.02 radians = 58.8°

Notice that this would have been just as easy if there were 30 vectors instead of three. So when you have
to add or subtract vectors, it is usually easiest to do it by components.
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Picking the right coordinate system:

Now often you can greatly simplify a problem by using some feature of the arrangement of elements in a
problem to simplify its solution. When we talk about "picking the right coordinate system" for a problem,
this is usually what we mean. A couple of examples will give the general idea:

First a simple one: Add two displacement vectors 4m NE and 3m SW. We could break this into N and E
components, buts it easier to add them along the direction NE/SW. Then we immediately find that their
sum is a vector 1m NE.

Here is a second, slightly more complicated example:

4m\ 30°

Q|
T

We could resolve this into components along horizontal and vertical x and y axes, but that would be hard.
Finding the sum will be easier if we think about a coordinate system rotated 30° counterclockwise. This is
shown as the x’-y’ coordinate system in the figure.

Writing vectors a, b, and ¢ in components along these x'-y' axes is simple:

So the sum of the three in this coordinate system is just:

r=3x"+4y'
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Which is a vector with magnitude |F| =+/3% +4% =5, and direction 6 = tan™(opp/adj) = tan™*1.33 = 53.1°.

Does it matter physically that we’ve defined this vector in an unusual coordinate system? Not at all. It’s
always the same vector no matter how we choose to measure it.

Components and vector equality

We say that two vectors are equal when both their magnitudes and their directions are the same. It’s also
true that if any two vectors are equal, each of their individual components (along the x, y, and z axes for
example) must be equal. So if we have two vectors A and B and they’re equal, we can write:

A=B or A,=Byx and Ay=By andA,=B;

This alternate way of writing things will often be simpler to keep track of than the more general definition
of vector equality. So a lot of times when we know two vectors are equal we’ll go ahead and write out
three independent equations, one for each component. Since the equations for each component are just
scalar equations, they are usually much simpler to work with.

Velocity vectors:

So now we have displacement vectors and we have some ideas about how to manipulate them.
Apparently velocities must also be described with vectors; to completely specify them we need to know
both how fast things are going and in what direction. We can define a velocity vector, averaged over some

period of time At, in a straightforward way from the displacement vector:

. AS
oo = at

As we shrink the length of the period of time At over which we average, we determine this velocity over
an infinitely short period of time, and speak instead of the instantaneous velocity:

V. i AS) ds
Vinstantaneous = Ilm At—0 Zt :E

Notice carefully what this is. The velocity vector is really just a scaled version of the displacement vector.
In other words it is just the displacement vector multiplied by a scalar number; the inverse of the time it

took to make this displacement (1/At ). What this means is that the velocity vector always points in the
same direction as the displacement vector.

Because motion takes place in three spatial dimensions, many things we will use to discuss motion this
semester will be vectors; including forces, accelerations, stresses, flow rates, etc. It is important that you
understand vectors very clearly, and that's why we're expending effort on them now.

1.6 Decoupled motions and vector components:

OK, so looking at vectors by their components is a useful convenience, a nice simplification of some
problems. It is also useful because the motion of objects along different directions can often be
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independent, so that if we break it into components we can consider each motion independent of the
others. One particularly nice example of this is the idea of relative velocity.

The "relative" we're talking about here is the constant velocity motion of some object observed by two
different observers, who are themselves moving relative to one another. Start with a simple example:

Joe is on a train moving past the platform at 4m/s. He walks forward in the train with a speed of
1m/s relative to the train. What is Joe's speed relative to the platform? In vector form this
problem can be written in a simple way:

A 4
v

EEE—— —>
th Vit VJP
Vy, = speed of train relative to platform = 4m/s
Vj: = speed of Joe relative to the train = 1 m/s
Vi, = speed of Joe relative to the platform = Vj;+ Vi, =4 m/s+ 1 m/s=5m/s

It's fairly obvious how this works when both motions are along one direction. How can we use the same
approach when they are not? The following example gives the idea.

A boat can travel at 3 m/s through the water. It steers straight across a river which flows past the

L»E

3 m/sT VBW

shore at 5 m/s. What is the velocity of the boat relative to the shore?

So the magnitude of the boat's velocity relative to the shore (\7BS ) is:

Vs | = \/(3 m/s)* +(5 mis)’ =5.8 m/s

5m/s

j:59°WofN.
3m/s

And its direction is 6 = tan‘l(
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1.7 Vector Multiplication:

We have seen above how to multiply vectors by scalars already; you simply multiply the magnitude of the
vector by the magnitude of the scalar. How do we multiply vectors with vectors? There’s no a priori
obvious way we should define vector multiplication, but as it turns out there are two physically useful
ways to do it. The first produces a scalar as the product of two vectors, and the second produces a vector
as the product of two vectors. We consider each in turn below.

The scalar product: a- b

The “scalar product’ of two vectors produces a scalar, just a number. It is defined so that the number
produced expresses the degree to which the two input vectors are aligned with one another. The formal
definition is:
ao5=|a”5‘cos(9) a
17

where @ is the angle between the two vectors. Since |é| COS(H) is the component of & b

along b, and Bcos(ﬁ) is the component of b along 4, there are two ways interpreting the scalar

product defined in this way. It is either:

The component of & along b , times the magnitude of b

or

The component of b along &, times the magnitude of &

In either case, the scalar product is a kind of "colinear product” or a product of the colinear parts of a pair
of vectors. Because the little ‘dot” symbol is used to denote this operation, it is sometimes called ‘the dot
product’.

What kinds of questions will we use the scalar product for? Eventually we will want to keep track of how
much objects move up and down. Imagine a bird flies through a three dimensional displacement vector

that we can write as a vector Jbird . If we want to know how much higher the bird is at the end of this

displacement compared to the beginning we could use the scalar product. If we ‘take the dot product’ of
this displacement with a unit vector which points straight up. Let’s call this unit vector y. If we do this,
we can write:

Distance the bird rises = Ay =d,, , - ¥

Likewise, this gives a shorthand for finding the components of a vector v:

X

Il
<

VX

V,

I
<
<
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Vv, =V-2Z
where X, ¥, and Z are unit vectors in the x, y, and z direction.
The vector product: ax b
The vector product takes two vectors and makes a third, new vector out of them.
dxb=¢

where the magnitude of ¢ is given by:

cl=la

B‘Sin(é’)

and the direction of G is perpendicular to the plane defined by @ and b in a direction given by the right
hand rule. The right hand rule says you should:

e Take your right hand
e Point your fingers in the direction of the first vector (& in this case)

e Turn your hand until you can "curl" your fingers in the direction of the second vector (5 )
e Now your thumb defines the direction of the vector C.

From this definition you can see that the vector c is always perpendicular to both & and b . The vector
product is a kind of measure of the amount of perpendicularity of two vectors. Because the symbol ‘X’ is
used to denote this operation, it is often called “the cross product’.

Note that this vector product has the special property that it does not commute. That is:
dxb=bxa
in fact it "anticommutes”
(éxﬁ)z—(ﬁxé)

Where will we use the vector product in physics? One good example has to do with rotation. If you want
to get something to start rotating, you must apply a force to it. The ability of the force you apply to make
the object rotate depends on both where you apply the force and in what direction you push. First we
define a radius vector r which goes from the center of rotation (the hinge of a door for example) to the
point where the force is applied. Given this vector I and the force vector F, we will guantify the ‘ability
of this force to create rotation’ by defining the torque 7 with the vector product:

7 =FxF
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Don’t worry if this is confusing now. It’s just an example which you ought to recognize when we return
to it later.

Multiplying vectors using components

It’s often the case that you’ll have two vectors written in terms of components. For example, you might
have:

d=aX+ay+a,’

b=bX+b,y+b,z

Once you have expressed the two vectors in this way, you can multiply the vectors in either the scalar or
the vector product in a convenient way. This approach takes advantage of the fact that these operations
are distributive, and that the scalar and vector products of the unit vectors are simple.

For the scalar product we have:

while:

0

RG=R%-3=§-x=9-2=3-%=3-§

You should be able to see why this must be true. Remember the scalar product measures colinearity. Two
identical unit vectors are perfectly collinear. Two perpendicular unit vectors are not collinear at all.

What about the vector products of unit vectors? Here the opposite is true. The vector product measures
something about how perpendicular vectors are. The vector product of two identical unit vectors is zero;
they aren’t perpendicular at all. The vector product of two perpendicular unit vectors has magnitude of

one, but now it’s a new vector. In fact it’s a unit vector in the third direction! In particular:

N>

Rxi=—9

<>

=0 Xx

b3
x>

X

A

—Z

x>

=0

<>
X
N>
Il

<>
X
x>
Il

<>
X

<>

~

xX=y Ixy=-X =0

N>
N>
N>

X

If you draw a little coordinate system you should be able to use the right hand rule to check all the
elements of this little table.
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Z comes out
toward you

<>

We can illustrate the utility of vector multiplication with components by providing a few examples. Let’s
look at the scalar product first:

d-b=ab +ab +ab,
which is pretty simple. So here’s an example:
a=3%-8J+57 b=28%+1y+32

What’s the dot product? This would be hard to guess or execute graphically, as they’re both in 3D. In
component form it’s simple:

d-b =(3x2)+(-8x1)+(5x3)=13
That’s it! Notice that the answer here is a scalar, as it should be for the scalar product.

The component approach to vector multiplication works the same way for the vector product. Here is a
basic example for this:

a=3%-8) b=1y+37

What’s the vector product of these two? Just expand it out and use the table above to fill in the
appropriate cross-products of unit vectors.

§x6=3(f(x )+9()A(><
xb =3

<>
N>
N
|
0]
—_
<>
X
<>
N—
|
N
NN
—_
<>
X
N>
N

jsh)
N>

-9y — 24X
You should notice that in this case the answer is itself a vector.
1.8.Life’s media: air and water

Throughout this book we will consider how the laws of physics enable life and looking for ways in which
they limit what life can do. Life on Earth is incredibly diverse, taking a still unenumerated variety of
forms and making its way everywhere from the top of the atmosphere to the bottom of the ocean, and
even some distance within the Earth. While the conditions of life vary from hotter than boiling to much
colder than freezing, all of life exists within, and is largely made of, two fluids: water and air. As we
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explore the physical aspects of life, we will continually find the properties of these two fluids playing a
central role. So we take a moment here to begin introducing these essential media of life."

Both air and water are fluids; they can flow, rearranging their shapes to flow through constrictions and
around objects. This malleable nature is essential. It allows the transport of nutrients into and wastes out
of living things, bringing new things to and from the boundaries of organisms. It also allows us to move
relative to our surroundings. As we will see, the motion of air and water around living things and their
motion through these fluids are intimately related.

The air and water living things encounter are also chemically complex. While each has a predominant
component (N, and H,0O), both mix freely with many other atoms and molecules. This chemical richness
provides life with opportunities, all of which are put to good use by some organism or another.

Physically, the most obvious differences between air and water come from the fact that air is a gas while
water is a liquid. Gasses are made of atoms and molecules which spend most of their time flying freely
through space, unattached to one another and not interacting at all. They spend only a tiny fraction of their
time colliding, though these collisions allow the gas to share energy efficiently, apply pressure to objects
it encounters, and expand to fill whatever contains it. As a result, the density of a gas can vary
enormously, and depends on how it is contained.

We can get a sense of what sets the density of air by using the ideal gas law as a kind of SCA model for
its behavior. This law relates the temperature T , pressure P, and volume V occupied by a specified
guantity of gas, in this case a number of moles n:

PV ocnT

The product of pressure times volume is proportional to the amount of gas times the temperature.
Rearranging this, we can make a prediction for how density o should change with pressure and

temperature:

n P
P oC—oC—

vV T

What does this mean for the air life lives in? The pressure of the air in the atmosphere is generated by the
weight of all the air above a certain point. At the Earth’s surface, it remains about the same, varying by
about 10% as the weather changes. When the pressure rises, the air density increases, when it falls, it
decreases. The temperature of the air is determined by the exchange of heat with its surroundings, and
varies across the Earth’s surface more dramatically than pressure, changing by as much as 50% from the
Antarctic to the Sahara. When the temperature increases, the density of the air decreases.

While the density of the air encountered by life varies quite a bit, for standard conditions it has a rather
small value of about 1.2 kg/m®. This low density, and the minimal way in which atoms and molecules in a
gas interact, makes moving through air quite easy.

Liquids like water are much less free. In a liquid, atoms and molecules cling to one another jealously,
never letting any one get far from the others. Since the atoms remain in intimate contact, never spreading
out more or moving much closer together, the density of a liquid is much better defined. For sea water,
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the most common kind on Earth, the typical value is about 1025 kg/m?®. For fresh water the density is less,
about 1000 kg/m?.

The density of water also varies with temperature, pressure, and composition. Fresh water is a few percent
less dense than salt water. At most temperatures, water expands when heated and contracts when cooled,
though again, only by a few percent. The density of water increases as you increase its pressure as well.
But since the molecules in water are already pretty completely packed together, it is very difficult to
change water’s density in this way. Going from sea level to the deepest part of the ocean, the pressure on
the water increases by a factor of more than a thousand, but the density of the water still increases by only
a few percent.

Moving through water is quite a bit more difficult than moving through air. Not only does it have much
more mass to move out of the way, the constant interaction of its molecules gives it a viscosity, a kind of
sticky resistance to flow, which is much greater than that of air.

So here are the first facts to remember about air and water. The density of water is much greater than the
density of air, about a thousand times greater. The density of air is about 1.2 kg/m®, of water more like
1000 kg/m®.
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Scaling relations:

Trigonometry:

A Quick Summary of Some Important Relations

Units, dimensions, and magnitudes:

Vsphere
SA here = Axr?
Vinything (size)3
SA g (size)2
A? + B? = C?

5 sin6 = B/C = opposite/hypotenuse
cosO = A/C = adjacent/hypotenuse
tan6 = B/A = opposite/adjacent

Mass Kilograms M
Length Meters L
Time Seconds T
Electric Coulombs Q
Charge
Tera- 10"
Giga- 10°
Mega- 10°
Kilo- 10°
Milli- 107
Micro- 10°
Nano- 10
Pico- 10"
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Vector operations:

The best general way to work with vectors is in component notation.

d=aX+ay+a,z
b=bX+b,y+b,7
a+b=(a,+h,)%+(a,+b,)y+(a,+b,)2
a-b=(a,—b,)%+(a,—b,)y+(a,~h,)2

ab=ab +ab +ab = |é|‘5‘cos(6?)
axb=(ah,-ahb,)%+(ab,-ab)y+(ab,—ab )2
\axﬁ‘ :|a|‘5‘sin(0)

Remember that the dot product produces a scalar (just a number), while the cross product produces a
vector with a direction given by the right hand rule.

' McMahon, T., and Bonner, J.T., 1983, “On Size and Life”, New York, Scientific American Library
" Denny, Mark W., 1993, “Air and Water: The Biology and Physics of Life’s Media”, Princeton University Press
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2. Standing up and staying still: forces, Newton’s laws, and statics
1) What needs to be explained in the motion of things?
2) Newton’s first law: motion requires no cause
3) Newton’s second law: how forces change motion

i. Quantifying forces

ii. Units for force
4) Newton’s third law: everything is an interaction

i. How can this be true? Thought experiments
5) Classifying forces

i. Contact and non-contact

ii. Passive and active

Physics for the Life Sciences: Chapter 2

2.1.0 What needs to be explained about motion?

Life on Earth faces many challenges. One of the most basic is dealing with the constant pull of the Earth’s
gravity. Every living thing near the surface of the Earth (and every nonliving thing too) is constantly
pulled downward. This downward pull is so steady and omnipresent we usually forget it’s there. But just
one misstep on the staircase, a moment’s loss of balance on your bike, one slip of the cup off the edge of
the table, and you’re reminded of the power of gravity with shocking suddenness. It’s not a stretch to
claim that gravity is America’s number one killer, and it is certainly the number one mechanical challenge
for life on land.

In addition to standing up to gravity, many living things have to move themselves and their stuff around.
They also need to manipulate things; digging holes, peeling fruit, throwing rocks, taking bites out of their
food. To accomplish any of this, living things need to be able to apply forces which they generate. So our
first big task will be to understand forces and how they affect things. This topic in physics is called
“mechanics”, one of those otherwise everyday words which means something quite special in physics.

Our understanding of mechanics is based on a few simple principals. They are traditionally summarized

in three terse laws first collected by Isaac Newton in the 17" century. Newton's laws provide the tools we
need to understand most everything about how objects react to forces. They allow us to predict motions as
various as the orbits of the planets and the swimming of a bacterium. Their ability to analyze almost every
mechanical situation bigger than a handful of atoms makes them a remarkable part of the collective
human intellectual legacy. They’re also incredibly useful for understanding what’s going on around you,
and hopefully by the time you finish studying them you will see the world and what happens in it in a new
and richer way.

We will begin by analyzing in detail objects which aren’t moving; a subset of mechanics sometimes
called “statics”. On Earth objects sitting still always experience a number of forces, but these are
balanced, so that the total force on them is always zero. Once we have statics in hand, we’ll look at cases
where the forces are not balanced, and learn to understand they ways in which unbalanced forces cause
changes in motion. While the principles of mechanics are simple, there is much to elaborate on. Even the
introduction presented here will take up the next seven chapters.
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2.2 Newton’s first law

Newton’s first law is this somewhat surprising assertion:

Any body continues in a state of rest, or of uniform motion in a straight line, unless it is
compelled to change its motion by unbalanced forces imposed on it.

This is usually called the “law of inertia”. It's not something Newton discovered, as even he would have
freely acknowledged; everyone working seriously on motion at the time knew about it. Still, it is hardly
obvious. The first bit is no surprise. Objects at rest stay at rest unless you do something to move them.
But the second part isn’t familiar at all.

Daily experience does not suggest that an object in motion usually stays in motion. What do you have to
do to keep an object in motion? You have to push all the time. Aristotle, noting this ubiquitous
experience, assumed that the “natural state’ of an object was to be at rest, and that to have an object in
motion required a motive force. He believed that motion implies a mover. But even he allowed a
tantalizing exception; objects in free-fall seemed to fall only because it was in their nature to do so. No
‘mover’ was required to create free-fall motion.

Aristotle gets a bad rap in the teaching of modern science, and perhaps we dismiss Aristotelian beliefs as
ridiculous too quickly. In fact Aristotelian views are consistent with much of ordinary experience —
objects in motion stop unless someone pushes on them. Seeing behind these "obvious" facts requires great
care. It took a world of smart people thousands of years to see what you’re learning now. Even with all
the facts laid out, you may still find it difficult to see what Aristotle could not.

It was Galileo Galilei, one of the delightful Italians of the 1600s, who first clearly revealed the flaws in
the Aristotelian idea of motion. His argument, which elegantly encapsulates the idealization which has
proven so powerful in physics, went like this:

1. Imagine a wedge shaped track. Roll a ball down one side and it rises up the other to almost
the same height

2. Carefully clean and polish the track and the ball rolls still more closely to the starting height,
so we might ascribe any remaining loss of height to friction between the ball and the track.

3. Now decrease the angle of the second side. The ball still rises to the same height from which
is was launched, but now travels much farther along the ramp.

4. Carry this to its logical conclusion: if we lower the second side until it is horizontal, the ball
will travel forever, always attempting to rise again to its original height.

Notice the details here: the ball will roll forever with no help from anything. Its ‘natural state’ is to be in
motion, and friction is the only thing which prevents that motion. Without friction anything that was
moving would continue forever.
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Why was it so difficult for people in the 1800 years between Aristotle and Galileo to understand this? The
problem is that friction is acting just about all the time: it is very difficult to see motion without it. This is
why, when you look around you, almost everything you see is at rest relative to everything around it. We
will talk about friction and how it works quite a bit in this book; it is interesting and extremely important
practically. But today we are interested in seeing the world without it. Galileo couldn’t quite do this. He
couldn’t actually make a world without friction. But he could imagine it, and it was this imagined
idealization that allowed him to recognize the law of inertia.

Where might you have seen motion without friction? The wonderful feeling you get gliding along while
ice skating or coasting on your bicycle comes because, unlike most of your motion, this is ‘effortless’.
Nothing is required to keep you going. When you are almost free from the shackles of friction, you get to
experience the law of inertia. A thrown ball or a fired arrow also moves along without obvious influence
from friction. Aristotle had some trouble trying to explain this. What ‘mover’ causes the motion of the
arrow?

There aren’t many cases of really frictionless motion in nature, but there are a few. Perhaps the most
impressive is the motion of the planets, which have continued to circle the sun for billions of years
without slowing down or needing to stop to refuel.

The law of inertia is absolutely crucial for understanding motion. Take for example what happens if you
smash your car into a brick wall. The front of your car strikes the wall. The force impressed on the car by
the wall causes it to stop moving forward. But that force is not directly impressed on you. Unless
something happens to you, you’ll just continue to move forward, in a continuous straight line, until
something causes you to stop. Hopefully this will be your seatbelt or at least your airbag, but if not, it will
be the dashboard, the windshield, or the wall. You will not stop, your motion will remain unchanged,
until an adequate force is applied to you.

The essential point is that ‘rest’ is not the natural state of thing. Uniform motion in a straight line is the
natural state of things. Objects at rest are just a special case of this. The most important thing the law of
inertia provides is a way to tell when unbalanced forces act. If you see an object moving at a constant rate
in a straight line, you know there is no unbalanced force acting. If, on the other hand, you see the motion
of an object change, then you know for sure that an unbalanced force has acted on it. The first law tells
you how to know whether an unbalanced force has been applied.

This rule had immediate and important implications for Newton. He knew, for example, that planets
travel around the Sun in elliptical orbits; not in straight lines. Applying his first law, this required the
action of a force pulling the planets toward the Sun. He knew, of course, that the Earth pulled objects
toward it. One of his greatest achievements was to recognize that the same force which pulled an apple
toward the Earth also kept the Moon in orbit around the Earth, and the Earth in orbit around the Sun. By
examining the motions of the planets, he divined a universal law of gravity, and made robust predictions
for the motions of planets, moons, asteroids, and satellites. The key to this was the first law.
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2.3 Newton’s second law

Newton’s second law is essentially of a quantification of the first. The first said that the motion of an
object will not change unless an unbalanced force acts on it. The second tells us just how much force is
needed to create a particular change in motion. In another sense, the second law is a quantitative
definition of a force. If you want to know what force acted, you need only examine how it altered the
motion of the object on which it acted.

To precisely state the second law, we need to quantify how much motion an object has. How to might we
do this? Is motion a scalar, something with only a magnitude? Or is it a vector, something with both a
magnitude and a direction? When an object is moving, it seems natural to care about which way it’s
moving. So for starters we will look for a vector measure of motion. A bit later we will see that it’s
sometimes also interesting to just ask whether things are moving at all, without regard for the direction
they’re going. This would be a scalar measure of motion.

Experience suggests that there’s something more to quantifying motion than just measuring how fast
things are going. There is a difference between a ping-pong ball and a minivan, even when each is
approaching you at the same 20 miles per hour. So in addition to knowing how fast things are going, we’ll
need to include how much stuff is moving.

With these general ideas in hand, we will define two different measures of motion; a vector measure and a
scalar measure.

e Momentum: a vector measure of motion. Momentum is often denoted with the symbol p, and it
is calculated by multiplying the mass of an object by a vector which represents its velocity.
Written as an equation we have p = mv . Since mass is a scalar and velocity is a vector, the

momentum is always in the same direction as the velocity. The dimensions of momentum are
ML/T, and in SI units we would measure it in kilogram*meters / second.

¢ Kinetic Energy: a scalar measure of motion. Kinetic Energy is usually denoted by the symbol
KE (which you will note has no little arrow over it; it’s just a scalar). The definition for this scalar
measure of motion is KE = 1/2mv2. The “v” in this equation is just the magnitude of the velocity
vector. The dimensions of kinetic energy are ML?/T?, which in SI units would be
kilogram*meters? / second?. This combination has a special name. One kgm?/s? is called one
Joule (J).

With motion quantified in these ways we are in a position to measure changes, and seek to quantify their
causes.

Quantifying Force

Now that we have a way of quantifying motion, we can write Newton’s second law formally and quantify
force. The usual way to write Newton’s second law is:

g _9
total — dt
Physics 135 Winter 2011 46

Copyright Timothy McKay



Put into words, the total force acting on an object is equal to the time rate of change of the object’s
momentum. When you see the momentum of an object changing, you can find the total force which acts
by examining how the momentum is changing. One little note about terminology. Many physics texts talk
about the “net” force on an object, by which they mean the total, vector sum of all the forces which act.
To me, it’s much clearer to simply say “total” force, and we’ll usually do that.

The dimensions of a force defined in this way are ML/T?, which in SI units would be kilogram*meter /
second?. This combination also has a special name: one kgm/s? is called one Newton (N). Many other
units of force are used in the scientific and technical literature. All can be converted to Newtons using
simple conversion factors, and we will use Newtons exclusively.

Because you’re probably not used to thinking about the time rate of change (the derivative) of a vector, it
might be useful to consider an example. Imagine the momentum of an object changes by some amount
AP over some period of time At, and we want to estimate how much force was required to create this

change. Since the force at each instant is defined by the instantaneous rate of change of the momentum,
we can estimate it by dividing the total change in momentum by the total amount of time this change
took. Writing this out:

Let’s look at this with vectors.

Fest = Ap /At
pi

Notice that the estimated force vector is in the direction of the change in momentum. It is not, in general,
in the direction of the momentum itself. Notice too, that although we have drawn the momentum and the
force on the same picture, they have different units and hence their lengths cannot be simply compared.

To improve our estimate of the force, we need only consider smaller and smaller time periods, and
correspondingly smaller changes in momentum. For example:

pi
Pt
/ Apzpf'pi Dp’ Fest:Ap/At
P+

Notice that although the change in momentum Ap is smaller here, the estimated force remains large,
because the corresponding time period At is also smaller. When we take this notion to its logical limit

Physics 135 Winter 2011 47
Copyright Timothy McKay



At — 0 and the force estimated in this way becomes the exact force as defined by Newton’s second law
above.

It’s useful to think about the relation between force and change in momentum in different ways to help
see it in all its forms. When momentum changes very suddenly, its time derivative dp/dt will be large.
Large forces are required to make sudden changes in motion. When momentum changes gradually, its
time derivative dp/dt will be small. Only relatively small forces are required to make such gradual
changes in motion.

If you want to create a certain change in momentum AP, what do you have to do? For example, imagine
that you want to stop an object that begins with a momentum p, ., - The final momentum of the object
P = 0, so the change in momentum required can be easily calculated:

APy, stop = Pinal — Pinitiat = ~ Pinitial

You can rearrange our estimate for the force to see what’s required to make this happen: Ap = FAt . This
emphasizes that a particular change in momentum can be achieved with either a large force applied for a
short time or a small force applied for a long time. In fact, this quantity FAt hasa special name; it is

called “impulse”. So it is sometimes said that you “apply an impulse” to achieve a certain change in
momentum.

For the moment, we’ll set aside the second law, because we’re going to first spend some time analyzing
static cases, where the momentum doesn’t change. We’ll return to dynamic cases, where momentum does
change, in Chapter 6.

2.4 Newton’s third law

The most important and perhaps least obvious fact about forces is that they are never isolated; they
happen only in pairs. All forces are two-way interactions. Interactions take place between things; there is
never a force that comes from nowhere and pushes on something. Every force comes from one thing and
pushes (or pulls) on another.

Newton, realizing this, was the first to recognize a fundamental fact about interactions: they are always
perfectly balanced. When one object applies a force to a second, the second applies an exactly equal and
opposite force on the first. This is true in every case. Every interaction involves two forces, equal in
magnitude and opposite in direction, one acting on each of the two interacting bodies.

This 'third law' of Newton is often stated in the somewhat arcane form Newton used:
For every action there is an equal and opposite reaction.
But it is perhaps more useful to rewrite this in more modern terms as:

When object A exerts a force on object B, object B exerts an equal and opposite force on
object A.
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Written as an equation:

— —

FA»B = _FBAA

Let’s be careful about the notation here. | have written IEA_>B . By this notation | mean the force applied

by object A on object B. Likewise the notation IEB_>A denotes the force applied by object B on object A.

The minus sign in the way we have written the 3" law just reflects the fact that while these two vectors
are equal in magnitude, they have exactly opposite directions.

Later in the course we will see that this third law, so surprising at first, has a very deep origin in physics.
It is ultimately related to the simple fact that the laws of physics are the same everywhere.

How can the third law be true? Third law thought experiments

The 3" law is simple to state, but quite surprising. No one before Newton ever recognized it. It almost
seems it can’t be true, for it seems to suggest that every force which exists will be balanced out in some
way. If every time I push on something, it pushes back equally on me, how can anything ever get
anywhere? Don’t those two forces always cancel out?

In physics it is often possible to illuminate a principle by considering examples and mentally working
through their implications. Application of ‘thought experiments’ like these led Galileo to a law of inertia,
and have always played a central role in physics. A few thought experiments may help to clarify how the
third law plays out in the world.

Consider first the way a child throws a ball. To do this, she holds the ball in her hand then pushes it

i

The 3rd law tells us that IEC%B = —IfEHC : the force the ball exerts on the child is equal and opposite to the

forward with a force lf(HB ;

force the child exerts on the ball. But the ball goes flying off, while the child does not. What's going on?

This asymmetry of outcome needs explanation. To begin with, the force of the child on the ball is the only
force acting on the ball, but the force of the ball on the child is not the only force acting on the child. A
very simplified view of the situation is drawn below:
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Note that | have not drawn this picture at a time after the ball was thrown, | have just drawn separate
pictures of the ball and the person while it is being thrown. After it is released there is no longer any
interaction between the ball and the person. To simplify this picture I have also left out the force of
gravity which pulls down on both the person and the ball, along with counteracting upward forces that
balance the pull of gravity. We’ll have much more to say about this a bit later.

The forces on the child come from the ball ( IEB%C ) and from friction between the child’s feet and the

floor (the force of the ground on the child: If(HC ). These two forces both act on the child, and can easily

cancel out, leaving the total force on the child zero. Her motion doesn’t change. Meanwhile the total force
on the ball is not zero, so its momentum is suddenly increased. The asymmetry of outcomes for the child
and the ball, seen in this light, has an obvious cause. Despite the third law guarantee that the forces they
apply on one another are equal and opposite, the full circumstances for the ball and the child are not the
same, and hence their outcomes are different.

What if we tried to make this much more balanced, perhaps by having the child throw the ball while
standing on a perfectly slippery surface (wet ice or worse) incapable of applying a frictional force? In this
case, illustrated below, there would be a net force on both the child and the ball.

FB%
I:C—)B

While the total forces on each are now exactly the same, the outcomes for the child and the ball remain
different. Why?

Newton’s second law tells us that a force acting for some period of time produces a change in momentum,
Ap = FAt . Since a force of the same magnitude acts for the same amount of time on both the child and

the ball, it must produce the same change in momentum in each. Because the mass of the ball is relatively
small, it must have a large change in velocity to create this change in momentum. Because the mass of the
child is relatively large, she will experience only a small change in velocity to create this change in
momentum. The same force acting on different objects can produce disparate outcomes even in very
simple cases.
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Analyzing forces: the free body diagram

The analysis above provides a first example of a technique we will find essential in understanding
mechanics; the construction of a ‘free body diagram’ for each element of a problem. Newton’s first two
laws tell us that the motion of an object is completely determined by the total force which acts upon it.
This is Newton’s most essential lesson: to understand change, focus on the forces. Newton’s third law
gives us an important clue about these forces, telling us that they always occur in equal and opposite
pairs.

To put these ideas to use, you take an example like the girl throwing a ball above and begin by taking it
apart. The first step is to draw each object in the problem alone, separated on the page from all the others.
Then begin to identify the forces which act on each object, always remembering that every force is part of
a ‘third law pair’. This picture, with every object you care about drawn separately, and with all the forces
which act on them identified, is a free body diagram. It is the essential first step in the analysis of a
mechanics problem. To illustrate how this approach works, let’s consider a slightly more complicated
case, one with three objects to keep track of.

Consider what happens when a horse drags a stone forward at a constant speed with a rope. This situation
has three elements: the horse, the rope, and the stone. We begin by drawing each of these three separately.
Then we identify the forces which act on each object.

For the horse, there are four. The first is its weight, the downward pull which the Earth’s gravity exerts.
Then there is an upward force exerted on the horse by the ground beneath its feet. It is this force which
prevents the horse from plummeting to the center of the Earth. To pull forward, the horse plants its feet on
the ground and pushes backward. When the horse pushes backward on the ground, the ground pushes
forward on the horse. Finally, the horse pulls forward on the rope, which then pulls backward on the
horse.

I:rope—)horse
ﬁ Ffriction%orse
—
Fgroundﬁ\horse

Whorse

I:horse—)lrope Frope»rock

Ffriction»rock
rock
Wrope I:groundﬂrock
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For the rope, there are three forces to keep track of. The first is the force with which the horse pulls on the
rope. This is part of the third law interaction between the horse and the rope. The horse pulls on the rope,
and the rope pulls on the horse. A second force on the rope is the force with which the rock pulls on the
rope. This is part of the third law interaction between the rope and the rock. The rope pulls on the rock,
and the rock pulls on the rope. The third force on the rope is its weight.

Finally we have the forces on the rock. They mirror the forces on the horse: the forward force of the rope
on the rock, the backward force of friction with the ground, the downward force of the rock’s weight, and
the upward force of the ground resisting this weight.

Much can be learned from these three pictures, without doing any calculations. First, all three objects are
moving forward at constant speed. Since their momenta do not change, the total force on each must be
zero. These force sums are vector sums, and since they sum to zero, the sum of the components along
each direction (vertical and horizontal for example) must be zero.

For the horse; notice that the force of the rope on the horse points partly downward. Both the downward
component of this force and the weight of the horse must be counteracted by the upward force of the
ground on the horse. This tells us that this upward force must be larger than the weight, something which
would not be true if the horse was just standing there. Similarly the force of the rope on the rock is partly
upward. This suggests that the upward force of the ground on the rock is somewhat reduced relative to the
rock’s weight.

The rope is mostly just stretched forward and back, pulled forward by the horse and backward by the
rock. In the process the rope is stretched. It will do whatever it can to "ease" the stretch, so it pulls the
rock forward while also pulling backward on the horse. These two forces are almost, but not quite
identical. You can see this from the free body diagram. Since there is a (presumably small) downward
weight of the rope, the upward part of the force of the horse on the rope must be somewhat larger than the
downward part of the force of the rock on the rope. This makes the two forces on the ends almost, but not
quite, equal to one another. In a sense the rope just “transmits” a force between the horse and the rock.
This transmission of force is not quite perfect because of the weight of the rope. For a massless rope, the
transmission of force would be perfect.

When faced with a mechanical situation of any kind, the essential first step will be to consider the forces
which act on each object in the problem. Creating a correct free body diagram for each is the most
important step toward a precise analysis.

2.5 Types of forces

Newton’s three laws are adequate to allow us to understand a truly extraordinary range of phenomena,
including everything to do with the structures of living things and how they move around. At a basic level
Newton’s laws tell us to understand motion by paying attention to forces. To do this, we’re going to
spend the next several chapters pondering different kinds of forces and learning how they act. We begin
here by classifying forces in two very basic ways.

Every force can be put into one or the other category in each of three different general schemes. The first
way to classify forces is to ask whether they are active or passive forces.
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Active forces are those whose magnitudes are determined by some external factor. Good examples are
pushes and pulls (where an active participant like a person decides how large the forces will be), the
gravitational force (which is always the same for a body near the Earth's surface), and electric and
magnetic forces we will learn about later in this course.

Passive forces are different from these. Passive forces are those which arise, and adjust themselves, in
response to active ones. A good example emerges when you push on a wall. The wall pushes back on you
just enough to counteract your active push. If you lean gently against the wall, it pushes only a little. If
you race at the wall and smash into it, it exerts a large force back on you. The key point with passive
forces is they are whatever they have to be, and what they have to be is determined by the active forces
which are present. There are limits to passive forces. If you run into the wall hard enough, it will not be
able to create a large enough force to stop you. Instead the wall will apply the biggest force it can and
then break.

There is a second, independent, way to distinguish between forces; we can classify them as contact and
non-contact forces.

Contact forces are those that arise from intimate physical contact between two bodies. They act only
when the bodies touch, in the usual sense of having their surfaces approach one another at atomic scales.
Examples of these very common contact forces are those we associate with pushing against a wall or
placing a book on the table, the forces which occur in a collision, and the frictional forces which allow
you to walk across the room.

Non-contact forces are forces which can act even when the two bodies are not touching one another. For
this reason they’re also called long-range forces The only non-contact force we’ll talk about extensively
in this class is gravity. You don't have to be touching the ground for the force of gravity to act on you.
Just step off a chair and you will see what | mean. In fact gravity can act on you even when you are very
far from the Earth, through completely empty space. There are other non-contact forces. One which you
have probably seen a little is the magnetic force, which like gravity can act even through empty space.

A third useful way to divide forces into categories is to talk about fundamental and phenomenological
forces.

Fundamental forces are those which we understand relatively deeply, like gravity. The laws describing
these forces seem to reflect an underlying reality at a level which suggests that they are "True" with a
capital T. Their behavior tends to become simpler and simpler as we look at them more closely. It turns
out there are only four of these fundamental forces known in nature, and even some of these are closely
coupled.

The four fundamental forces are:

e Gravity: Every object with mass attracts every other. This attraction holds planets,
stars and galaxies together, and keeps you on the surface of the Earth.

e Electricity & Magnetism: This combination is responsible for chemistry, and all the
bonding between atoms that makes matter interesting. Every force you’ll see in this
class, except gravity, ultimately arises from electricity and magnetism.
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e Strong Nuclear Force: This very short range force holds atomic nuclei together,
allowing for all the existence of the various elements of the periodic table.

e Weak Nuclear Force: This short range force is responsible for the radioactive decay
of some atomic nuclei.

While both the strong and weak force are crucial for the existence and nature of chemical elements, they
are also remote, in the sense that about all they do is help create the periodic table. You won’t see them
acting more directly in your lives.

Phenomenological forces, unlike fundamental forces, are inescapably complex, like the force of friction.
While all forces ultimately arise due to the four fundamental forces, this is often far from clear. When
forces are more complex, we describe them with “laws” that would more appropriately be called models.
In them we attempt to quantify an often very complicated set of phenomena by a series of
approximations. The distinguishing feature of phenomenological models is that the more closely you
study the phenomena, the more complicated the law you must use to describe it becomes. This is
considered evidence that the understanding you have is ad-hoc, approximate, and not fundamental.

That doesn’t mean phenomenological models for forces are not accurate reflections of reality or that they
aren’t “true”. It’s just that by acknowledging that they gloss over details, we confine them to being “true”
with a lower-case t. We know for sure that there are other details hiding beneath these general principles.

We’ll recall these three divisions a little as we move through our discussion of mechanics. Keeping these
ideas in mind will help you to know how different forces act.
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A Quick Summary of Some Important Relations

Newton’s Laws:

N

Unbalanced forces alter motion, but are not required to maintain motion
The size of a force is measured by how rapidly it changes momentum
Every force is part of an interaction between two objects
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3. Forces and structures
1) An active, non-contact example: gravity
i. Gravitational attraction: a property of mass
ii. Newton’s universal law
iii. An approximation important for life: earthly weight
2) A richer example: forces in the contact of solids
i. A first component: the normal force
ii. More on free body diagrams
iii. Examples of determining the normal force
iv. The second component: friction
3) Transmitting forces: ropes and tension
i. Forces within a rope
ii. Ropes and sending forces around corners
iii. Why massless ropes?
iv. Tension and force transmission
4) Quantifying the ability of a force to cause rotation
i. Two ways of thinking about torque
ii. Torque and the vector product

Physics for the Life Sciences: Chapter 3

In this chapter we will start exploring the application of Newton’s laws. We begin by learning about a few
forces and how to model their action. For now, we will focus on gravity and a basic model of the contact
forces between solids. With this model of forces in place, we have enough to analyze a wide variety of
structures, from elephants to the Parthenon.

3.1 A first force: gravity

The first specific force we will talk about is gravity, the perfect example of an active, non-contact force. It
is an active force because its strength is determined by a very specific law — Newton’s ‘universal’ law of
gravitation. The gravitational force on an object doesn’t depend at all on what other forces act. It is a non-
contact force because it very freely acts at a distance, even a very great distance, and even through empty
space.

Gravity is a fundamental force. Every object with mass attracts every other object with mass through this
force, though as we will see, the gravitational force between two everyday objects is usually very weak. It
only becomes large enough to notice when at least one of the objects involved is very massive, something
like the Earth. The gravitational force exerted on things near the Earth’s surface can be modeled very
simply, as described in the next section. After introducing this simple, limited model, we will examine a
more fundamental model for gravity: Newton’s universal law of gravitation. Even Newton’s very accurate
model of gravity is not perfect, and we will finish our introduction to gravity with a few words about our
best current model for its action, Einstein’s general theory of relativity.
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Weight: an active, non-contact force

All objects near the surface of the Earth are pulled toward it by its gravitational interaction. Physicists call
this downward attraction of the Earth an object’s ‘weight’. For objects close to the surface of the Earth,
there is a very accurate (though approximate and phenomenological) force law which predicts the
magnitude of this attraction:

W= FEarth—Object = Mopject 9
In this equation, M, is the mass of the object in question, and g is a constant which has a value

g=9.8 m/s’

Multiplying the mass of an object in kilograms times this constant g gives the magnitude of the downward
force on the object in Newtons. All objects near the surface of the Earth experience this force, no matter
what other forces act. So this is the one force which is always present on every living thing we know
about. The free body diagrams you draw for mechanical analysis of anything near the surface of the Earth
will include this force for each object.

There are several details to consider carefully when you think about weight. The first has to do with
Newton’s third law. The third law says that if the Earth is pulling you down with a force W , you must be
pulling the Earth upward with a force which is equal and opposite. That is:

I:Y I:Ea\rth—You =-W.

ou-Earth — You

While the Earth pulls you down, you pull it up. This action-reaction pair is always there.

If this is so, why doesn’t the Earth come rushing up to meet you when you jump off a cliff? After all,
you’re pulling the Earth upward just as hard as it’s pulling you down. The reason for this disparity, which
always emerges in unequal interactions like this, is the relatively enormity of the Earth’s mass compared

to yours. Your weight ( F ) is a big enough force to quite easily change your motion. But a force of

Earth—You
the same size (F,,, .., ) is much too small to make an appreciable change in the motion of the Earth. So
although these two forces act to pull you and the Earth together, it’s you who does all of the moving.

A second point worth discussing in some detail is the sensation of weight. What is it we feel as our own
weight? Can you feel the force of gravity upon you? Imagine what happens when you jump off a chair.
For a moment you are floating freely in the air. Do you "feel™ a force tugging on you when you do this?
While you’re in the air, there is no sensation of force at all. Try this if you dare, but please be careful.
Don’t jump off anything higher than a chair! So what is the sensation of weight? What is this feeling you
get when standing around all day?

When you are standing on the floor, the sensation that you feel is the upward pressure of the floor on your
feet. Now think about what you feel when you sit in your chair. Is there any pressure on your feet? Now
the pressure seems to be on your backside. And if you stand on your head you “feel your weight’ on your
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hands and head. So could what we feel really be the weight? Is what you feel really the force exerted on
you by the gravity of the Earth? In fact it is not. The sensation you feel when you talk about weight is
actually the force which something else applies to you to resist the downward pull of gravity, to prevent
you from falling downward.

When you are standing still your weight (the force of gravity on you) pulls you down. To remain
stationary, some other force must balance this. That balancing force is provided by an object you are in
contact with. The sensation you feel as weight is just the force of the floor (or your chair, or whatever)
pushing up on you to resist your weight. Take away the floor, or the chair, and your sensation of weight
would vanish, but the weight itself, the downward pull of gravity, would not.

Newton’s universal law of gravity and the origin of ‘g’

Gravity is one of the four fundamental forces of physics. It can be described very accurately in a
remarkably simple law originally proposed by Newton. He used it to explain both gravity on the surface
of the Earth and the motions of the planets in the solar system. This was a tremendous surprise in
Newton’s time, when the workings of the heavens were widely thought to be completely unrelated to
what happens on Earth. For this reason, Newton’s formula is called the “universal’ law of gravitation.
Today we have strong evidence that every law of nature is universal; the same laws of physics which act
here on Earth apply absolutely everywhere in the cosmos. Despite this, we still honor Newton’s
achievement by singling out this one law for its universal nature.

Newton’s law describes a “central force’, which always pulls two objects directly toward one another. The
magnitude of the gravitational force between objects A and B can be written:

E o Gm,m,
AB 2
rAB

Where m, and m, are the masses of the two objects, r,; is the distance between the two objects, and G is

a universal constant which sets the scale for the strength of the gravitational force. The value of G is about
6.67x10™ N(m/kg)>.

Gravity, perhaps surprisingly, is a very weak force. You can see this by applying Newton’s equation to an
ordinary situation. Two one kilogram objects placed one meter apart attract one another with a force of
6.67x10™ N. You might compare this force to the weight of an apple, which is typically about 1 N; ten
billion times larger.

If all the objects we encountered were about our size, we might never notice gravity. But one thing near
us is much, much bigger: the Earth. The downward gravitational force the Earth exerts on us, our weight,
is the most familiar example of gravity. How can we use Newton’s universal law to understand the
gravitational attraction between a person and the Earth? After all, some parts of the Earth are very close to
us, while others are far away. Each part exerts its own small force on us. To find the total we would have
to construct the vector sum of millions of tiny forces.
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Fortunately, the precise nature of the gravitational force law allows a remarkable simplification. For a
force of just this form (dependent on the product of the masses and inversely proportional to the square of
the distance) it can be proven that the force exerted by a spherical shell of mass on an object outside the
shell is exactly the same as the force which would be exerted if all of the mass of the shell were located at
its center. This ‘shell theorem’, first proven by Newton to solve exactly this problem, makes it easy to use
the universal law of gravitation to predict the weight of a person standing on the Earth’s surface.

Think of the Earth as constructed of many shells, one nestled inside the next. Each shell exerts a
gravitational force exactly as it would exert if all its mass was concentrated at the center. Since each shell
does this, the force from the whole spherical Earth is just what it would be if all the mass of the Earth
were concentrated at its center. Since a person standing on the surface of the Earth is one Earth radius
from this center, the gravitational force experienced by such a person is:

Gm m Gm
_ Person” " "Earth __ Earth
F - - mPerson

Earth—Person Rz R2
Earth Earth

Notice that while the mass each person on the Earth is different, the mass and radius of the Earth don’t
change. Combining the constants shown in the parentheses above we get:

6.67x10" N(m/kg)’)(6x10% k
(6.67 (mrkg)*) (6 9) o8

(6.4x10° m)’

This combination of constants, which has units of m/s?, is just the constant ‘g’ invoked in the section
above. This derivation shows how the very simple phenomenological force law described above,
W =mg, emerges from a much more fundamental understanding of how gravity works. It also allows us

to consider how accurate we might expect this simple model to be.

First, how accurate is the approximation that everything near the surface of the Earth is actually a distance
R from its center? The Earth is not a perfect sphere. It is covered with mountains and deep ocean

trenches. These are not, however, very large compared to the size of the Earth. The difference in height
from the deepest ocean trench to the top of highest mountain is 19,700 m. This is about 0.3% of the
Earth’s radius. An object moving from the bottom of the Marianas Trench to the top of Mount Everest
would experience a change in weight of about 0.6%. So this is only important if we are demanding rather
high precision.

Earth

In addition, the Earth is not a perfect sphere. It is slightly flattened, so that a point on the equator is farther
from the center of than a point at the poles. This causes a similarly slight increase in weight, about 0.5%,
as an object moves from the equator to the poles. There are other small effects which alter the apparent
weight, but do not affect the actual gravitational attraction of the Earth, like the buoyancy of the air and
the rotation of the Earth. The upshot of this discussion is that none of these effects are important at even
the 1% level.
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The assumption that W = mg is a very useful approximation for everything near the surface of the Earth.

Since this is where life spends its time, this approximation will be fine for most purposes in this class. It
will fail only when we consider the gravitational interactions of objects separated by much greater
distances, like the Earth and Moon or the Sun and Jupiter.

A consequence of gravity: fluids and the buoyant force

Life exists immersed in fluids; either air or water. Both are fluids because they flow quite freely. They are
unable to resist the sideways pull of gravity and hence slip downward until their surfaces become level
and they can go no lower. When an object is immersed in such a fluid, gravity will pull down on both the
object and the fluid around it. If the object is more dense than the fluid, as is usually the case in air, the
object will be pulled downward more strongly than the fluid, and will sink through it until supported by
some other means, often the ground. If the object is less dense than the fluid, as is sometimes the case
with water, the fluid will be pulled down more strongly, will flow under the object, and provide at least
enough support to hold up the object against the pull of gravity.

We will set aside a detailed understanding of this phenomenon for the moment, but note for now its most
basic result. Any object immersed in a fluid here on Earth will experience a buoyant force equal in
magnitude to the weight of the fluid which the object displaces. We can calculate this buoyant force by
multiplying the volume of the object by the density of the fluid and the gravitational constant g.

Fbuoyant =p quidVObjectg

Like the weight, this buoyant force is ever present for objects on Earth, and hence for all life. It is an
active force, in this case present only when there is contact between the fluid and the object. It is often
useful to compare the magnitude of this buoyant force to the weight of an object, which can be written in
a parallel way:

Fweight = ,0 objectVobjectg

From this equation it should be clear that the relative importance of these two forces, one pulling down
and one pushing up, depends on comparing the density of the fluid to the density of the object. When the
density of the object is larger than that of the fluid, weight will be larger, and the object will tend to sink
through the fluid until it is supported by something else. When the density of the fluid is larger than that
of the object, the buoyant force will be larger, and the object will float upward through the fluid until
either its density is matched by the fluid density or it emerges from the surface of the fluid.

The media of life, air and water, have densities which differ by about a factor of 1000, making the
importance of buoyancy on land and under water very different. Most living things are largely made of
water, and hence have densities within a factor of a few of water.

pairatsea level = 12 kg/m3
pfresh water = 1000 kg/m3
~500-2000 kg/m®

,0 organisms
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From these numbers it should be clear that, when considering living things, we can largely ignore the
action of a buoyant force in air. It plays a negligible role in supporting the weight of an organism. But if
that organism lives in water, the buoyant force is certain to play a much more important role. It will
always support at least some large fraction of the organism’s weight. The support of weight by buoyancy
is one of the principal reasons for the very different structures seen in organisms on land and in the sea.
We will return to it a number of times in this text.

3.2 The normal force: a passive, contact force

Most of the forces we encounter in our lives are contact forces. They arise from the direct, "touching”
interaction between two bodies. When two more or less solid bodies are in such direct, atom-to-atom
contact, it will be useful to describe the force between them as composed of two parts; a component
perpendicular to the plane of contact between the surfaces (the normal force), and a component parallel to
plane of contact between the surfaces (the friction force).

The first of these is the part of the contact force which prevents one object from moving through the
other. Let’s look at an example.

T I:N = I:Table—Book

Book BOjOk l I:Book—TabIe
Table lWB Table

When | put a book on a table, the book's weight tries to pull it downward. To move downward the book
would have to pass through the table. The table prevents this by pressing back up on the book with a force
that keeps it in place. This force (which acts to prevent the objects from passing through one another)
always acts perpendicular to the plane of contact of the objects. Because of this we will call it the
“normal” force. It is NOT normal in the sense of "usual™, but normal in the mathematical sense of
“perpendicular” to the surface between the two objects.

There’s a real mystery here. How can an inanimate object like a table exert a force? More important, how
can a table “decide” how much force to apply; pushing up very lightly on a pencil while providing a much
larger force to support a lamp? The answer lies in the passive nature of the normal force: it exists only in
response to some other force.

Begin by thinking about a cushioned chair. When you sit on it, the chair compresses to some point. To
compress it further would require a force larger than your weight. In other words, as it is squashed, it
pushes back up on you, harder and harder, until it is pushing up on you with a force equal to your weight.
This squashing, this distortion, is what allows the chair to push back up on you. When you push atoms
closer together, they push back.

Now imagine something harder than the cushioned chair. If you sit on a plastic chair, it too is distorted
until it pushes back on you just enough to balance your weight. Take this to its conclusion; when you
stand on the floor, the floor actually distorts until it pushes back on you with a force just large enough to
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prevent you from falling through it. This distortion, which always accompanies forces applied by solid
objects, is perfectly real, even when it is not apparent.

So this normal force prevents objects from passing through one another. How big is this force; what is its
magnitude? The basic answer is "whatever it has to be". For this reason, the normal force is our first
example of a passive force. Passive forces have magnitudes which are not determined in advance. They
arise, and adjust themselves, in response to active forces. Their magnitudes are determined based on the
restrictions which give rise to them. They can be any size from zero up to some limit at which the object
creating them breaks.

So, if | push down on a table, it pushes back up on my hand with a force just equal and opposite to my
own. If | push harder the resisting normal force increases. If | stop pushing it goes away. The force adjusts
itself to be just as large as it needs to be to prevent my hand from moving through the table.

What’s the underlying origin of the contact force between solids? Ultimately all of the forces we will talk
about in this course (except gravity) are consequences of electromagnetic forces between atoms. The
details of these electromagnetic interactions determine whether atoms placed close together will resist
being pushed closer together or will attract one another (perhaps bonding and sticking together). Later in
this book you will learn quite a lot about the nature of these electromagnetic forces. For now, we will
encode a lot of complicated atomic interactions in a few simple phenomenological rules.

More on free body diagrams

Notice what we did there. In order to understand what happens to two bodies while they interact, we have
drawn each of the bodies separate from the others, so that we can understand fully the forces on each one.
Let's look at a couple of other examples of this. What happens when a book sits on the table? What are
the forces on it: First we might draw the circumstance:

Now, in order to understand it, | draw a free body diagram for each part of the problem. First consider the
book. What are the forces acting on it? It experiences a weight, the gravitational force of the Earth pulling
it downward. Since it is sitting still, it must also experience some other force which balances this. This is
the force with which the table pushes back up on the book. This is called the normal force.

T Frable-Book = Fn

l Fearth-Book = Ws
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Now in order for it not to move we know that all the forces acting on it must balance, so that the normal
force and weight must be equal in magnitude:

FN :WB =mgg

Since the normal force must be opposite in direction to the weight, we know that:

IEN = msgy

In this equation we note the direction of the normal force with the upward § unit vector. What does

Newton's third law say about this? It says that for every force there must be an equal and opposite 3" law
partner. What are the third law partners for the forces which act on the book?

The normal force is the force with which the table pushes on the book. The table pushes on the book with
aforce: Fry, = F, =M@y, so the book must push on the table with a force Fy; = —F, = -mggy .

These two forces, the force of the table on the book and the force of the book on the table, are equal and
opposite.

What about the weight? The Earth pulls on the book with a force IfW =—Mmy0y , so the book must equally

pull on the Earth with a force IfBE =m,QgYy . So to understand the (non)motion of the book, we have to

consider two different third law pairs:

I:TabIe—Book = _lfBook—TabIe (Normal force) and IE)Earth—Book = _IEBook—Earth (WEIght’ or graVity)

And to draw all these forces and keep track of both interactions | would have to draw three objects:

T I:TB
F
l FEB BE

l Fer

This is not really all there is. At this point, we have not drawn all the forces acting on either the table or
the Earth. The only body I have completely analyzed here is the book. The table must have other forces
acting on it, or it would accelerate downward, away from the book. Likewise, the Earth must have other
forces acting on it or it would accelerate (however slowly) up towards the book.
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It is very important that you should understand the third law, and be able to identify third law pairs in any
situation correctly. If you can't identify third law pairs with confidence it will be very difficult for you to
correctly analyze even slightly complex systems.

Examples of determining the normal force

The simplest case to examine is the one we’ve just done. When | set a book down on a table, the table
distorts slightly, bending just until the upward force it exerts perfectly balances the downward force
which gravity exerts on the book. So in this case

Fy =W,

Now imagine that instead of just laying the book on the table, I push down on it with some force F, .

What is the normal force now?

Since the book remains in place, I know that F, -W, - F,, =0, 0r F, =W, + F,, . How does the

table manage to apply a larger force now than it did when I just laid the book on the table? How does it
adjust its force to just the right value? This happens because the resisting force the table applies increases
as it distorts further. When you push down on the book, the table distorts more, and hence is able to apply
a stronger resisting force. It just continues to distort until the force it is applying is just big enough to
balance the book.

What if, instead, | pull up somewhat on the book?
Feul T TFN

|

ZWB or FN ZWB - FPuII

Now | know that:

+F

Pull N

Physics 135 Winter 2011 64
Copyright Timothy McKay



Notice what happens though, as | gradually increase F F, continually decreases until it becomes

Pull ?
zero. What happens after this? In most cases, the normal force cannot become negative. Typical solids do
not stick together when you try to lift one of them off. But of course they sometimes do, as when two
sticky surfaces come into contact. This should remind you that when we talk about the normal force in
this way, we’re talking about an approximate model for a very complex variety of interactions. We have
seen simple cases in which the normal force F, for an object on a table can be either larger or smaller

than the weight of the object; it may even be zero. In fact the special case in which F, =W, is only true
in particular cases, and nothing like a general rule.

The weight and the normal force are not third law partners. The third law partner for the upward force
F, is the downward force of the book on the table, and the third law partner for the downward force W,

is the upward gravitational force of the book on the Earth. Since F, and W are not third law partners,

there is no reason that they must be the same. Sometimes they are, but they certainly don’t have to be. To
determine the normal force F in a particular problem, you just have to figure out how large a force is

required to keep the objects from moving through one another. You can do this by summing the
components of all forces in the vertical direction.

In fact there’s another, really simple and obvious way to tell that F, and W, cannot be third law partners

in this problem: both forces act on the same object! Remember, the third law is about forces which are
exchanged between two objects. The two parts of a third law pair can never act on the same object.

The other part of the contact force: friction

The normal force is what prevents objects from passing through one another. It is the part of the total
force between two surfaces which acts perpendicular to their plane of contact. The rest of the force
between two bodies is the part which acts parallel to the plane of contact. This force acts to prevent one
object from slipping over the other. It resists their relative motion. We call this part of the interaction
between two objects the force of friction. We will have a lot more to say about friction and how it works
in the next chapter. For now let’s just concentrate on the manner in which friction acts. Friction acts in an
attempt to prevent relative motion along the plane of contact between two objects.

Let's look at a simple example; an object sitting at rest on a slope:
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What are the forces on this? There is a weight acting straight down. Then there is some interaction
between the book and the surface of the wedge it sits on. This total contact interaction has two parts: a
normal force perpendicular to the surface, and a frictional force along the surface. | know (because its
motion doesn’t change), that the total force acting on it must sum to zero.

perpendicular

Very often in a problem like this it is useful to work in a coordinate system which defines directions along
and perpendicular to the surface between two bodies. Such a coordinate system is shown above. Now we
know that since it doesn't move the sum of the forces must be zero, and that in turn means that the sum of
the forces in each direction must be zero. Now let's add up these forces in each direction:

>F

aong = Wa sin(6)-F
>F

friction — 0
=F, —W; cos(4)=0

Perpendicular

So in this case we know that:

I:friction :WB Sin (0)

Fy =W, cos(0)

Once again we see that the normal force is not equal to the weight (it rarely is), and in addition we see
how we can use the lack of motion to figure out how large this "frictional force™ must be.

This picture of a block on an ‘“inclined plane’ is the very icon of traditional introductory physics courses.
Unlucky students have been learning to analyze these for literally hundreds of years, and they’ve always
seemed completely unconnected from everyday experience. After all, most of you stopped playing with
blocks some time ago. But in fact this example, while drawn in an abstract way, is very much an everyday
experience. Here are two examples.

The first is standing on a slope: every time you stand on a slope a situation very like what we just
described happens. If there is not enough frictional force preventing you from sliding down the slope you
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will slip downward. No doubt this is something you’re quite aware of, and once snow and ice arrive
you’ll be careful about standing on slopes.

The second example is the slope itself! Each layer of a hill would slip downward if not held in place by a
frictional force. Sand dunes, like Sleeping Bear dune in Northwest Michigan, provide a vivid example of
this. When they become too steep, the force required to hold the sand in place becomes larger than the
frictional force available, and top layers of sand begin to slide downward. The maximum angle for a pile
of sand is often given the poetic name ‘the angle of repose’. More impressive and dangerous versions of
this are seen all the time in avalanches and landslides.

3.0 A way to transmit force; ropes and tension

We have seen how simple contact forces can occur due to the compression of bodies, as when a book sits
on a table. It is also possible for objects to exert forces when they are “stretched”. This process of
attempting to stretch a body is called putting it “in tension”. A simple example of how an object in
tension behaves is given by a block hanging from the ceiling on a rope.
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We can draw three free body diagrams for this: one for the ceiling, one for the rope, and one for the block.

Fer I Fre

FBR

l Fre Fer=W,=mg l

l Fes = Wg = mgg

What do we know about these? We know that for the mass at the bottom:

SF =F

y Rope—Block

Weo =0 Or K W

ope—Block = Whjock

and for the rope:

SF =F

y Cieling—Rope ~

W

Rope

F

Block—Rope

=0 or F

Cieling—Rope

=W,

Rope

+F

Block—Rope

We also know that some of these are third law partners, so their magnitudes must be equal. In particular:

I:Rope—CeiIing = I:Ceiling—Rope and FRope—BIock = FBIock—Rope
So now we can say:
I:Ceiling—Rope :WRope + I:Block—Rope :WRope +WBlock

So the force which the ceiling must exert to support the rope and the weight is just equal to the weight of
the mass plus the weight of the rope. Not too surprising.

Now let’s think about what's really happening inside the rope. Picture the little piece of the rope at the
bottom. The mass is pulling down on it with a force W, . This little piece has some mass Am g , so we

can write the same kind of free body diagram for it:

Fram

FER = Angl
FBR

So for this little piece we find:
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IF, =F -W,, Wy =0 or F

Rope—Am

ope—Am :WAm +WBIock

As we gradually move up the rope, this force inside the rope gradually grows, until just at the top, where
it must support the full weight of the rope below it, the internal stretching force in the rope is supporting
the full weight of both the entire rope and the block.

What's happening is that each little part of the rope is being pulled equally both up and down; these forces
are trying to tear the rope apart. It is the ability of the rope to hold itself together against this “tension”
that allows it to transmit the weight of the hanging mass to the ceiling above.

It is also possible to transmit forces with compression. That's what | do when | push something along with
a stick. And there's no need for the thing in tension to be a rope. | would just as well hang the mass from
typical solid like a wooden meter stick and the analysis would be exactly the same. There would be a
tension in the stick.

Most solids can support loads either in tension or in compression. Some others, especially those with
more interesting internal structure like ropes, tendons, and flesh, are better at supporting loads in tension
than compression. As we will see, your body is basically a framework of bones capable of supporting
your weight in compression, with flesh and organs hanging from this skeleton. Most of these other parts
are held in place by materials stretched in tension.

Let’s apply this to a real world example. You’re headed to the airport with a suitcase to
check. It has the maximum allowable weight (50 Ibs, or about 23 kilograms), and you
carry it with your arm straight up and down. The picture is to the right. The analysis is
the same as above:

I:shoulder—arm = I:arm—shoulder = Warm + Wsuitcase
I:arm—shoulder = I:Earth—arm + Fsuitcase—hand = Warm + Wsuitcase

F

hand—suitcase

- F

suitcase—hand

=W,

suitcase

So the force your shoulder applies to your arm is larger than just the weight of the suitcase. Your shoulder
has to hold up both the suitcase and your arm.

How much does this matter? To know you have to figure out how much your arm weighs. How might
you estimate this? Let’s say your arm is a cylinder about 10 cm in diameter and 0.8 m long. This would
have a volume:

V,m ® (r*0.05°)*0.8 = 6.3x10°m’
To find the mass, we multiply this volume by a density. What’s the density of your arm? You are mostly

made of water, so a reasonable estimate is the density of water, which is about 1000 kg/ms. So the
estimate for the mass of your arm is:

m,,., ~density * volume = 1000 kg/m®* 6.3x10°m® = 6.3 kg
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The force your shoulder applies to your arm isW, .+ W_; e = M0 + M ied = 287 N To just

hold up the suitcase the force would be less: W = 225N.

suitcase

Ropes and sending forces around corners

One important reason that ropes and tendons are important is their ability to transmit a force around a
corner.Consider the following variation on the block hanging from the ceiling:

What happens here? Here the weight of the block pulls down on the rope, stretching it, putting it in
tension. The nifty thing is that the rope allows this force to be transmitted around the corner, so that
ultimately it is supported by the wall on the left.

This happens very often in organisms, and for our purposes this will be the most important kind of
application. A good example is the human shoulder, where a complex series of tendons transmit forces
generated by muscles in your back and shoulders around the flexible corner of your shoulder. Muscles
pull straight along their length, while the tendons (which do not themselves generate forces) transmit the
forces generated by the muscles to where they need to be applied.

Why would physicists talk about massless ropes?

Let's go back a step to the simple hanging mass problem. We found that the force exerted by the ceiling
on the rope was:

I:Ceiling—Rope = WRope +WBIock = (mBIock + mRope )g

In other words the rope isn't a perfect way to send a force from the ceiling to the block; it isn’t a perfect
force transmitter. Some extra force is needed to support the weight of the rope. How important is this
flaw? The answer depends on the details of the problem. If the mass of the rope is very much less than the

mass of the hanging object Mg, << Mg, , then we can say with some accuracy:
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F

Ceiling—Rope

I

WBIock

In this case the rope is a very good force transmitter. It allows the ceiling to support the block below

rope = Majocx 7 NOW the force the ceiling exerts

without adding anything to the force required. What if m
on the Rope is at least twice what it would be if we directly attached the mass. So in this case the rope is a

really poor force transmitter.

For some of the situations we analyze we will assume that the mass of a rope is small enough to not
matter. I the rope is assumed to be ‘massless’ in this way, then it becomes a perfect force transmitter.
Any force applied to one end is directly transferred to the other end no matter what the circumstances. In
technological cases, people always try to use ropes where this is the case, selecting a rope strong enough
to support the load, but light enough to be able to transmit almost all of the force. Very often it is a
reasonable approximation. The one case where this becomes very difficult is with very long ropes, like
those used to sample material at the sea floor, or the cables used in the construction cranes which have
become so common in Ann Arbor.

When we assume such a massless rope, the force exerted on one end is directly transmitted to the other.
This force which is transmitted is what we call the ‘tension’ in the rope. So, if the tension in a rope
stretched between two objects A and B is 50N, this means that object A is using the rope to pull on object
B with a 50N force, and object B is using the rope to pull on object A with a 50N force. This force is
perfectly transmitted by the rope, with no loss.

Tension and force transmission:

Consider the following situation. A block (my,,, ) hangs on an essentially massless string.

Bloc
Considering the block as we did above we find:

T Foo=T

lWBlock = Mpjockd
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The fact that the block is at rest implies that T = my,,g . With what force does the string pull on the

wall?

Now consider a slight variation. Instead of attaching the string to the wall, I hang a second, identical
weight off a second pulley. What is the tension in the string now?

P

Itis still T = mg . Remember, the string merely transmits a force from one end to another. It doesn't
matter if the transmitted force comes from the wall or another block; it is still just transmitted.

3.5 Torque and rotational statics

We have to extend our discussion of objects at equilibrium, things which aren't accelerating, to consider
another kind of motion: rotation. We know from Newton's second law for translational motion that

=l

>F =

Q_|Q-
~—

If we see that the motion of an object is not changing, so that dp/dt =0, then ¥F =0. This is the first

condition for equilibrium. When the motion of an object is not changing, the vector sum of the forces on
the object must be zero. For point objects this is all we need to know.

Now it is time to go beyond this, and begin thinking about how extended bodies will behave under the
influence of forces. What happens if | have the following arrangement; a bar with a rope holding it up on
one end?

T T= Mgiockd
|
|

l Majockd

This is a body for which 2F, = > F, = 0. Do you think it will remain at rest? No, it will begin to rotate.
Whenever a body is extended, larger than a "point” object, it is necessary to know both what forces act on
it, and also where the forces are applied.

You all know from experience what we would have to do to prevent rotation in the system described
above; just hang it from two ropes:
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T=12mg 4 4 T=12mg
|

' o

Why is this case stable when the other wasn't? Because here we have one force which tends to make the
object rotate clockwise, and one which tends equally to make the object rotate counterclockwise. This is
the basic idea of our second condition of equilibrium; the forces applied to an object at equilibrium must
be applied in such a way that their tendency to make the object rotate cancels out.

Quantifying the ability of a force to make something rotate:

It should be clear from this little discussion that the ability of a force to make an object rotate depends not
only on how large the force is, but also on where it is applied. If you want to open a door (to make it
rotate around its hinge) you can either apply a large force close to the hinge, or a small force far from the
hinge. The direction you apply the force also affects the result. If you push on a door along a line which
passes through the hinge, the door will never begin to rotate.

The number which quantifies this "ability to cause an object to begin to rotate" is the called the "torque".
A first definition of the torque which will generate rotation around a center C is:

r,=rIF

where r is called the "moment-arm™ of the applied force and F is the magnitude of the force. This
"moment-arm™ is illustrated in the following figures:

There are three lines drawn in each picture. In each the solid line is a vector representing the force F . It
begins at the point where the force is actually applied. The dot-dashed line is a vector drawn from the

center of rotation to the point at which the force is applied. We call this position vector T'. The dotted line
perpendicular to the force F in each case represents the "moment-arm" associated with this force, r, .

One thing to note is that | can move the force forward or back along its direction and produce exactly the
same r, . A second thing to note is that the rotation produced by a force has a particular direction; it

causes rotation in one direction or another. We record direction of rotation using a "right hand rule”. One
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way of stating this rule says that if you curl the fingers of your right hand in the direction of rotation, your
thumb points in what we define as the direction of rotation.

Experience, and a second way of looking at torque

Does this definition for torque agree with experience? Let's look at a few limiting cases.

1. Fis perpendicular to T : In this case, |F| =T, and the torque is just 7 =rF . This is the

familiar case of opening a door by pushing perpendicular to its surface. | can create the same
torque by either pushing with a large force close to the door hinge, or pushing with a small
force far from the door hinge. The torque is the product of these two.

2. Force F is parallel to (or anti-parallel to) T -. In this case the force points towards or
away from the center of rotation, and r, is zero. The torque associated with this force is zero.

Pushing straight toward or pulling directly away from a center of rotation can never cause
motion about this center.

3. Force F is applied at the center of rotation: This is really a subset of the previous
example, and it also generates no torque and causes no rotation.

These facts suggest a second, equivalent way of looking at torque. We can take each force which acts on a
body and break it up into two components, one directed along the line to the center of rotation and one
perpendicular to this line. The component along the line through the center of rotation will generate no
rotation. Only that component of the force which is perpendicular to the line through the center will cause
rotation. So another way to determine the torque generated by a force can be written:

T, =rF,

So now we have two alternate ways of looking at it:

=rF=rF

TC €

1

Compare these on the drawing. Both have the same force applied at the same location, and the show the
two ways of visualizing the torgue.

r

F.

Torque and the cross-product

There is a general way to see what the magnitude of the torque will be:
r,= 1 F = rF = rFsin(0)

where 0 is the angle between the vectors r and F, as shown in the drawing:
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You can see this by noticing that F sin (&) = F_, or by seeing that rsin(&) =r, . This generic way of

denoting the torque is often written in a mathematical short-hand:

I =FxF

This is the second of the two kinds of vector multiplication which we defined in Chapter 1. It's called a
cross product, and the way we would say this equation in words is "torque is equal to r cross F". What it

means is that the torque is a vector perpendicular to both T and F , which has a magnitude rF sin (49)

The direction of this torque vector comes from the right hand rule we described above. Point the fingers
of your right hand along r, then curl them towards F, and your thumb points in the direction of the torque.
Because the cross-product of two vectors produces a vector as its result, it is also called the vector
product.

Notice one essential feature of this: You cannot calculate how large a torque some force produces until
you specify exactly what center of rotation you’re talking. Sometimes the center of interest will be
obvious, other times, like in some examples which will follow, it will not.
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A Quick Summary of Some Important Relations

Weight — the pull of the Earth:

W =F

Earth on an object

=mg (toward the center of the Earth)

Free body diagrams:

The motion of an object is completely determined by the forces which act on it. To understand those
forces, consider the object alone, completely free and separated from other objects, and worry only about
the forces which are applied to it. Anything which does not apply a force cannot affect its motion.
Drawing the object alone, and noting all the forces which act on it, is creating a “free body diagram’. This
is the first step in solving a problem in Newtonian mechanics.

Contact forces between solids:

These forces are often divided into a component perpendicular to the interface between the two objects,
the “normal force”, and a component parallel to the interface, a “frictional force”. The normal force is a
passive force which takes on whatever magnitude it must to prevent one object from moving through the
other.

Tension and force transmission:

Flexible materials like ropes and tendons can be used to apply forces to distant objects. In this sense they
‘transmit’ a force from one place to another, and even around corners. So long as the rope is much less
massive that what it pulls, it may do this transmission very effectively.

Torque and rotational statics:

Just as force is what causes changes in motion, ‘torque’ is what causes changes in rotational motion. The
size of a torque created by a force depends on both the size of the force and how it is applied. To create a
large torque the force should be applied far from the center of rotation, and perpendicular to a line from
that center to where the force is applied. This is quantified in the definitions of torque:

T = rcenter to force x F

|7|=r.F =rF, =|f||F|sin(0)
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4. Understanding staying put: applying conditions for equilibrium
1) Two conditions for equilibrium
i. Weight and center of gravity
ii. Stability and balance
iii. A detailed example
2) Your body as a structure
i. Lifting a weight
ii. Standing on tip-toe
iii. Bones, tendons, and muscles
3) The inadequacy of two equilibrium conditions
i. Real problems are too complex: more information is needed
ii. Structures and materials
iii. Hooke and the forces applied by objects
4) Materials instead of objects; the microscopic view
i. Specific response of materials: stress and strain
ii. Keeping them straight: stress causes strain
iii. Relating the two in stress-strain graphs
5) Stiffness of materials
i. Young’s modulus when stress-strain graphs are linear
ii. Stress, scaling, and the shapes of living things
iii. Other forms of stress: shear and pressure
6) Limitations of the linear stress-strain model
i. Strength: plastic deformation and rupture
ii. Non-linear materials: the stuff of life
iii. The J-curve and its advantages

Physics for the Life Sciences: Chapter 4

4.1 Understanding staying put: applying the conditions for equilibrium

We have seen that there are two conditions required for equilibrium of an extended object. The total force
on the object must be zero, otherwise the object would start moving. In addition, the total torque on the
object must be zero, otherwise it would start rotating.

F=0 and X7 =0

every center
Now there is a key feature to this second condition. It says that the sum of the torques around every
possible center of rotation must be equal to zero. If this were not so, if there were some center of rotation
around which the torque was not zero, the object would begin to rotate around that center. This is a
powerful fact. When you are analyzing some situation and finding the forces and torques on a body in
equilibrium, you can sum the torques around any convenient center of rotation you like and you know the
sum must always equal zero. Judicious choice of which center to use can very much simplify the
calculations required in many statics problems.

In this chapter, we will learn how to apply these two conditions to the study of structures like elbows,
elephants, and bridges. We will see that they have much to tell us about why organisms have the shapes
and sizes which they do. To begin, we need to examine just where it is that forces act.
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Many of the forces we've been talking about are contact forces; a push from a finger, the pull of a rope.
Each is applied at a particular place on the surface of an object. It is clear where they act, and hence easy
to calculate what kinds of torques they create. But there are exceptions. One comes from non-contact
forces like gravity. They don’t occur only at points of contact, so where do they act? The others are
distributed forces like the normal force. In a simple case, like our book on the table, it’s not hard to guess
how the force will be distributed. The total normal force is spread equally across the area of contact. But
what if the book lies on a slope? How is the normal force distributed then?

Weight and the center of gravity

The only non-contact force we are concerned with right now is gravity. Where does gravity act? How do
we determine what kinds of torques the weight of an object might produce? Gravity is an interaction
through which each bit of mass pulls on every other bit of mass. So when the Earth pulls downward on
our book, it applies a small force to each small part of the book. The force on each little part is determined
by the mass of each little piece: AW =Amg .

Keeping track of all these little gravitational forces would be a challenging task. But fortunately there is
again a powerful simplification we can use. We can always treat the force of gravity on an object as if the
entire force were being applied at one particular spot called the “center of gravity”. For objects near the
surface of the Earth this is in the same mass-weighted average position of the object which we also call
the center of mass. To find it, you multiply the mass of each little piece of the object times a vector which
represents its position, add all these up, then divide by the total mass:

- _zme_[p(n)my
° Z;m; Jp(f)dV

In this definition the sum is taken over all the little pieces which make up the object, each of which has a
mass M, . In the integral form we replace M, with the density at the point r multiplied by a little volume

element at that point: p(f) dV . If the object is not near the surface of the Earth the center of gravity may

be different from this center of mass. This happens only for really large objects, like the Moon. In our
considerations of living things we needn’t worry about this.

For homogenous (with the same density everywhere) and symmetrical objects, the center of gravity is
always in a obvious location. For a sphere it is at the center, for a hoop at the center, for a square at the
center, a cube at the center, etc. If the object is either not homogeneous or not symmetrical the center of
gravity will be “pulled” toward the parts which are more massive.

For example, consider the CG of a 30 cm long bar with a spherical 10 kg mass on one end and a spherical
20 kg mass on the other end. We’ll ignore the mass of the bar. Where is the center of gravity for this
object? Taking the origin to be the location of the 10 kg mass, we have:

_Im  10kg x0X +20kg x0.3X
zm 10kg + 20kg

0.2X

Res
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Rather than being in the center of the barbell, the center of gravity is pulled toward the larger mass, and is
instead two thirds of the way down from the end. If you wanted to balance this barbell on one finger, you
should place the finger at just this point, and of course your finger had better be rather strong.

There is an important lesson here: Because gravity acts equally on all parts of an object, it cannot cause
rotation around the center of mass. It can, of course, cause rotation around other centers. Contact forces,
on the other hand, always act on particular parts of the body, and hence can, in principal at least, generate
rotation around any point on an object.

An application: stability and balance

A fine application of the idea of equilibrium is stability and balance. Thinking about this is especially
useful as it helps to illustrate the different kinds of equilibrium. There are three kinds of equilibrium:

1. Stable equilibrium: if the object is slightly disturbed it will return to equilibrium

2. Unstable equilibrium: if the object is even slightly disturbed it will move far away from
equilibrium

3. Neutral equilibrium: a small displacement leaves the object in a new equilibrium position

These three are illustrated by thinking about a cone. When the cone is standing on its bottom, it is in
stable equilibrium. Tip it a bit and it falls back into place. If it’s standing on its tip, it is in unstable
equilibrium. Tip it a bit and it falls over completely. If you lay the cone down on its side it is in neutral
equilibrium. Roll it over a bit and it just lies there.

Stable Unstable Neutral

For simple cases of balance, like those which apply to many organisms the following rules apply:

1. If atilt away from equilibrium raises the center of gravity, the object is in stable equilibrium

2. If atilt away from equilibrium lowers the center of gravity, the object is in unstable
equilibrium

3. If atilt away from equilibrium leaves the height of the center of gravity unchanged, the object
is in neutral equilibrium

This distinction arises because of the torque exerted on the object by the force of gravity. If you’re raising
the center of gravity when you tip it, the force of gravity will tend to pull it back down. If you’re lowering
the center of gravity, the force of gravity will tend to pull it away from where it started.
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When will an object "tip" over? Any time the center of gravity of an object is not above the supporting
surface of the object it will tip. Once the center of gravity moves past the support point, gravity exerts a
torque which tends to tip the object over.

Consider these pictures to get an idea of how this R fﬂl ,JQ
works. As we tip this stiff little person over he is, at () 3 ! /, ) A /7 / ,\,
first, stable. We’re still raising the center of gravity. 'U|? # | U U */U 17 //
Eventually, the center of gravity moves outside the ‘ l // 75 [ / / G
support point, and is now moving downward. This | f / )

is unstable. ' =

A quantitative example of rotational equilibrium: a truck on a bridge

A first quantitative example comes from analyzing a truck driving over a bridge supported on its two
ends. What might we like to know about this? Imagine we know the weight of the truck, and we want to
know how much force must be applied by the right and left hand supports as the truck moves across the
bridge. This is just the sort of thing an engineer or an architect might need to know to make sure the
bridge is safely constructed.

A ]
v [

We need to draw a free body diagram for something. Let’s begin by considering the forces on the bridge
slab; the road itself. There is an upward force on each end, a downward force of the weight of the bridge,
and a downward force due to the weight of the truck.

Fo mg MmMyg Fr

A A

We can find the magnitudes of F_ and Fg by using the equations of equilibrium. There are no forces in the
horizontal direction, so we sum the forces in the vertical direction, taking up to be positive.

XF, =F -mg-mg+F;
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Let’s take the left end of the bridge and sum the torques around this point. We need to choose a sign
convention for rotation as well: we will take the counter-clockwise direction to be positive. If we do that,
we get:

L
zz-Leftend =-mgx—m,g (Ej‘i_ I:RL

Why do I choose the left end of the bridge as the center of rotation? After all, I could calculate the torques
around any center and they must always be equal to zero. This choice is made purely for convenience. By

picking a center through which one of the two unknown forces passes ( F, goes through this spot) I know

that only one of the unknown forces (F, and F;) will appear in the torque equation I obtain. Making this
choice just makes the algebra a little simpler than it would otherwise be.

Solving the torque equation yields:
F.=mg 1+1m g
R t L 2 b

And plugging this back into the first equation gives us the other unknown force:

X m
R emoli-{ )+

What do these equations tell us? The upward force exerted by the right hand bridge support is half the
weight of the bridge plus a fraction of the weight of the truck that varies as it drives across the bridge.
When it is over the left hand support, all of the truck’s weight is supported on the left, when it reaches the
middle, half of it is supported by each, and when x=L, all the weight is supported on the right. The
upward force exerted by the left hand support makes up for the rest of the weight of the bridge and truck.

Added together, F, +F;, =mg+m,g, all the time. This is a nice answer, which we might have
anticipated, worked out using our equilibrium conditions.

4.2 Your body as a static structure: weight lifting

Your bodies, and the structures of other living things, obey these same principles of statics. These simple
ideas, that in a static situation the sum of forces and sum of torques must be zero, are all it takes to
understand a lot about how your body works. Let's start with a simple example: holding a dumbbell with
your forearm held horizontal.

Imagine that the mass of your forearm ism._, the length of your forearm is L , and the mass of the

fa
dumbbell is M, . How do you hold this weight up? You have a bicep which attaches to your forearm just a

few centimeters from the joint in your elbow. If you poke around the inside of your elbow now, you can

feel the tendons which connect this muscle to your forearm. We will call this distance X.... .So the

bicep
picture looks something like the diagram in the center.
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g ) I:Bicep

Mg mqg

Remember, the only way to analyze forces is to consider a single object in a free body diagram. So let's
look just at the bone in the forearm:

myg

<«

v
Fua Mg Y

If you just had the three forces we mentioned (weight of forearm, weight of barbell, and upward bicep

force Fg, ) your forearm would rotate clockwise. So, there must be another force. What is it? It's the

force of the end of your upper arm bone pushing down on the end of your forearm: F, . This push-pull

arrangement is always present when your body supports weight. Your body works by pulling with
muscles and pushing with bones. The combination of the two is what allows your full range of movement,
and you need them both: muscles must have something to pull against.

To determine the size of these various forces, we have two facts to work with:

YF=0 and X7=0
Here there are only y forces, so:

-m,g-myg=0 or F

Bicep = I:ua + mfag + mdg

SF, = Fyey — F,

icep " ua

If we sum the torques around the end, we find:

L LY 1
z“TZXFBicep_(Ejm]‘ag_Lmdg=0 or FBicepz(;j(Emfag_mdgj

What does this mean for people of different sizes? If I make a person larger, both L and x are likely to
increase in a similar way. So how does the force they must apply change? It wouldn’t change at all. This
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would suggest that lifting a dumbbell of mass M, would require the same force for a small person or a
large person.

Be careful though, for we have buried in this statement an assumption of isometry. Isometry means that
during a change in size, all dimensions of the person change by exactly the same factor. This is another
way of saying the size change is isomorphic, and preserves the shape. The shape of the person is the
same, only the size of the person is different. If this is violated, let’s say because one person is short and
stocky and the other is tall and lanky, the simplest scaling will not hold.

For the short and stocky person, L/x will be relatively small. For the tall and lanky person, L/x will be
relatively large. Hence it will be easier (require less bicep force) for the small and stocky person to hold
up the barbell than the tall and spindly person. This is in perfect accord with our sense that short stocky
people seem stronger than tall and lanky people. Short, stocky people actually can lift more with muscles
of the same intrinsic strength. Understanding the physics of statics allows us to appreciate these simple
scalings, and to explain a lot of what we know about how people move.

Returning to the first equation:

L)1 L L
Fa = X Emfag +mg|-mgg -mg = o 1im,g + M m,g

Note that both F

tendon from your bicep must be attached some small distance from your elbow. The farther away it is
attached (the larger Xis), the easier it is to lift something like this dumbbell. Both F,

Bicep AN F,. goto o when X goes to zero. If your body is going to function, the

sicep and F; become

smaller. The closer to the joint your bicep is attached, the harder it is to lift a load. Given this, you might
ask why it is that your bicep is not attached farther out along your forearm.

As is usual in systems arrived at through natural selection, this design represents a compromise. Moving
the connection of the bicep to the forearm farther out would make it possible for you to lift larger loads
with the same muscle. So why hasn’t this happened? What’s the drawback?

A bicep attached farther out, say at the center of the forearm, would have to contract much more to take
your arm from stretched out straight to fully bent. The ability of muscles to contract along their length is
limited by the biology of the muscle cells, and in the end this limitation more than makes up for the
increased force required when the muscle is attached closer to the elbow.
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Attached
near the
elbow

L
V

Standing on tiptoe

\
/

Attached at
the center of
the forearm

Here’s another very common situation we can understand with statics principles: standing on tiptoe. How

do the forces work for this?

I:achilles;

I—achilles
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We’ll start with a few simplifying assumptions. First, ignore the weight of the foot itself. This is probably
OK because your body weighs so much more than your foot. Second, assume all three forces shown act
straight up and down. In reality the forces applied by your shin (Fsin) and your Achilles tendon (Facn)
don’t act quite straight up and down, but they nearly do.

Let’s sum the forces:

2F, =0

X

+F

toe

SF =F

y achilles

F

shin

=0
And sum the torques around the point where the shin bone contacts the foot:
Z:Taround shin — Ttoe Ltoe Sin (9) - I:achilles I‘alchilles Sin (0) = O
These two (useful) equations contain three unknowns. So we can’t solve them with more information.

What information is there? We know that the floor must support your total weight. If we assume you’re
standing on tiptoe with both feet, then each must support half your weight, and we know that:

My, 9
F = you
toe 2
Using this additional fact we can find:
F _ Ltoe F _ Ltoe myoug
achilles — L toe — L 2
achilles achilles

And from this we find:

L

achilles

m OUg 0e
I:achilles = y2 (14_ L[ J

There are some interesting things to note. First, the force applied by the Achilles tendon is independent of
the angle of your foot. This is a little surprising, but if you try it out you’ll see it’s approximately true. It is
nearly as easy to stand on tiptoe no matter what angle your foot is at, and you can move up and down with
very little additional effort.

Second, the force applied by the Achilles tendon is larger than half your weight, usually by quite a
substantial amount. Just holding a ruler up to my foot I find Ly, = 5 cm and Ly = 20 cm. So the upward
force applied by each of my Achilles tendons is about four times as large as half my weight, or twice my
total weight!

This is why your calf muscles are probably substantially larger than your biceps. You rarely lift twice
your weight with your biceps, but you do it all the time with your calves, with every step you take.
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Bones, tendons, and muscles

Large land animals (mammals, reptiles, and birds) are constructed of three primary mechanical
components; bone, tendon, and muscle. Bones provide the primary support mechanisms which enable you
to stand up against the continual downward pull of gravity. You might fruitfully picture yourself as a
skeleton of bone with a lot of flesh and organs hanging from it.

Like most biological tissues, bone is both complex and various. In general, 50% or more of bone mass is
made of calcium phosphate, a hard mineral which gives bone its strength. Bone is very strong in
compression; which is how it is typically used in your skeleton. Muscles usually pull mostly along the
long axis of the bones to which they attach.

This skeleton is held together, pulled one way and the other, by an elaborate set of muscles attached to the
bones by tendons. Muscles are the only active agents; on receiving the right stimulus, these cells can
contract along their length, generating a tensile force. The tendons then transmit these forces to the bones
of your skeleton.

The rest of your tissues, all the organs like the brain, liver, eyes and so on, are, mechanically at least, just
along for the ride.

4.3 The problem with our two equilibrium conditions

In some cases, the two rules for equilibrium allow us to fully understand how structures and organisms
stand up to the pull of gravity. But as we will see, these two rules are almost always not enough to
completely figure out what’s happening. To fully understand organisms and other structures, we need to
understand how the materials they are made of apply forces. How can a bone, or a table, or a string, apply
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a force? Answer that and you will have laid out the crucial piece of information needed to analyze
equilibrium.

What’s the problem with our equilibrium conditions? The condition for equilibrium requires:

F=0 and X7 =0

any axis
We have noted these conditions before when we first started to consider rotational motion. Since each of
the two is a vector equation, there are really six independent equations here. Three state that the sum of
the forces in each of the three directions is zero, and three state that the sum of the torques around each of
three perpendicular axes is zero.

Let’s try a new example to remind you how this works. Consider a ladder resting on a floor which exerts
a frictional force on it. The ladder leans on a completely slippery frictionless wall. Where the ladder rests
against the floor, there is both a normal force perpendicular to the floor and a frictional force along the
floor. Where the ladder touches the wall, there is only a normal force.

I:NW

m.g
Frr

T Fne

How large is the frictional force applied by the floor on the ladder? Use the constraints:

0

>k

horizontal

=Fyw—F+=0 and XF

vertical

=Fy-mg=0

There are three unknowns here, and two equations. So while these nicely let us find the normal force
exerted by the floor, they leave us with no knowledge of the normal force exerted by the wall or the
frictional force exerted by the floor.

FNF =m.Jg

What about the torques? Let’s calculate the sum of the torques around the point at the top. Defining
counterclockwise rotation as positive, | have:

2T

top

=FyLcos(6)-m.g (%)cos(@)— FeeLsin(0)=0

Substituting in the value for F obtained above and dividing by L ,we get:
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1 . m
ng(chos(G)—Fstm(@):O or FFF:W?@)

As the angle gets smaller, you’re going to need a larger and larger amount of friction to prevent the ladder
from slipping. Your intuition will tell you that there’s a limit here. If you try to stand the ladder up so that
it is too nearly horizontal it will slip. No big surprise in this.

Now let’s consider a just slightly more complicated case. The same situation, but now imagine that there
is some friction with the vertical wall. Of course there would be in any real case.

How are the equations changed?
IR =Fy-Fe=0 and ZXF =F;+F,-mg=0

And if we still sum the torques around the top, we still have
L .
37, = FyeLcos(8)-m.g (chos(e) —F.Lsin(6)=0

But now I can no longer identify Fye with m,g, because part of the weight may be supported by friction
with the wall! What’s going on here? We now have three equations to work with, and four unknowns:

Fues Feey Faws and By,

We know mathematically that this system of equations cannot be uniquely solved without more
information. You might think of it as having infinitely many solutions. Imagine that you pick a value for

F- (or indeed any one of the four forces). Given this value, all the other forces are determined from the

equations above. But without knowing more, all of these infinitely many solutions are allowed by the
laws of physics invoked above, and nothing we have done will tell us which of the many possibilities will
actually occurs.

We can illustrate this ambiguity by considering two extremes. If | take the ladder and cram it down into
the corner, there will be a large frictional force at the top of the ladder pushing it up (as in the picture
above). This will reduce the frictional force pushing it to the left on the bottom. If, on the other hand, |
pull up some on the ladder, trying to lift it away from the corner, there will be a downward frictional force
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at the top preventing it from sliding up. In this case I will have to increase the inward frictional force at
the bottom. In other words, there are many possible answers to this problem, and without knowing more
than just the two equilibrium conditions we can’t tell exactly what the forces will be.

This is quite generally the case in statics problems. At best, you have only the six equations which the
equilibrium conditions provide, and in most cases this will not be enough to determine the forces in an
object. Another simple example is a cow. A cow stands on four legs, each of which supplies an upward
force. In this case you can use one force equation (up and down) and two torque equations (tilting side to
side and front to back) to constrain things, but there are still four forces, so you’re out of luck.

A more extreme example is the suspension bridge. Here there are three equations, and potentially
thousands of forces you need to know. If you’re a bridge designer and you incorrectly determine even one
of these forces, the entire bridge may fail.
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How can such a problem be solved? Nature solves such problems without difficulty. When you assemble
a bridge like this it has particular forces in each element. When a cow stands in a field, there are in fact
four particular forces on its legs. Something happens to determine which combination of forces (among
the many which the conditions for equilibrium allow) will actually occur. What happens, and what
additional information is needed to predict what the many forces will be?

The answer lies hidden in the ways objects actually supply forces. Remember, an object like the leg of a
chair or the bone in your leg can only apply a force when it distorts a little, when it changes shape. To
understand a structure like your chair, you have to know exactly how the chair changes shape when you
apply a load to it. It’s no longer enough to assume that its shape is fixed, since it actually never is.

Structures and Materials

Understanding how objects support loads is an ancient endeavor. People have always wanted to be able to
build things which will stand up, rather than collapsing on their heads. Over the centuries, a tremendous
amount of empirical knowledge about how structures behave was built up. This empirical knowledge was
what enabled the construction of such magnificent buildings as the Hagia Sophia in Istanbul, the Taj
Mahal in India, and the Cathedral at Chartres in France. Amazingly, a theoretical understanding of how
structures support loads was developed only very much later. Some important aspects of how even
common materials support loads were not understood until well into the 20" century.
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The understanding of structures developed to enable people to construct buildings and machines has,
more recently, been put to use in understanding living structures. The same principles which govern how
buildings and bridges stand up apply as well to giraffes and antelopes. There is one qualitative difference
we will emphasize later: man-made structures tend to be made of stiff, inflexible material, while nature
often uses stretchier, more malleable stuff. As we’ll see, there are a lot of reasons evolution settled on this
solution. Indeed more and more manmade objects (like plastic bumpers and airbags) share this sort of
flexibility.

A Little History: Hooke and how objects support loads

Newton understood that when you hang a mass from a string its weight must be supported by a tension in
the string. Newton knew what happened in a case like this, but didn’t discuss how the inanimate string
could apply a force to the block. Perhaps he wasn’t interested enough in such practical things. Robert
Hooke, Newton’s contemporary (1635-1703) and sometime competitor, was intensely interested in
practical things. He built the first air pump (for Robert Boyle), discovered the diffraction of light and used
it to promote a wave theory of light, and was the first person to explicitly note the expansion of materials
when they are heated.

Hooke also published a book called “Micrographia”, an enormously influential (and beautiful) series of
images obtained through his microscope. In these images he revealed, among many other things, that a
drop of water is alive with microorganisms, that the eyes of a fly are compounded of thousands of
individual ommatidia, and that living tissues are made of many tiny “cells”. In fact Hooke invented the
name. In many ways, this book was a starting point for the life sciences. You can look at some of this
exceptionally beautiful book online at:

http://archive.nIm.nih.gov/proj/ttp/flash/hooke/hooke.html

For the topic at hand, Hooke’s most important discoveries had to do with how objects support loads. His
main realizations are part of what is now called Hooke’s law. He found that objects can support loads
only by yielding to them. If you push on an object, it will be distorted; squashed by some amount. He
noted that most solids are elastic as opposed to plastic. This means that if you squash them with modest
forces and let them go, they spring completely back to their original shapes. Elastic objects (like rubber)
do this. Plastic objects (like clay) change shape permanently when you distort them.
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Finally, Hooke constructed a first quantitative model for the response of solids to loads by noting that the
amount of deformation is, in many solids, proportional to the load you place on them. These observations
are encoded in a general form as a very simple form called “Hooke’s Law”:

F

applied to the object =

K AX

When you apply a force to a solid, it is squashed by some amount AX in the direction of the force which
you apply to it. Newton’s third law tells us that when you push on this solid, it will push back on you with
an equal and opposite force which resists the deformation. The solid is trying to return to its original
shape.

F KAX F

applied to the object = object pushing back ==

k AX

When you think about Hooke’s law, make sure you keep track of which element of this third law pair
you’re interested in. One is the force applied to the object, the other is the force applied by the object.

In Hooke’s law, the constant “k ™ tells you how hard large these forces will be for a given deformation

Ax . Each object has a different constant, which you can determine by applying a force F and seeing how
far the object yields (Ax ). If the constant K is small, the object is easy to deform; you would call it
flexible. If the constant K is large, the object is hard to deform; you would call it stiff.

The signs in these equations remind you that when you stretch an object outward, so that Ax is positive,
the force you exert is in the positive direction, while the force the object exerts on you will be negative, in
the opposite direction. If you squash the object inward, so that Ax is negative, the force you exert on the
object will be negative, while the force the object exerts on you will be positive.

4.4 Limitations to Hooke’s picture: it only works for individual objects

The problem with Hooke’s law for practical purposes is that it makes no predictions about what k will be
for a particular object. If I’'m interested in one particular object | can measure its spring constant, and then
predict exactly how it will deform under a load. But this is not too practical in making a new building. It
suggests that you must build it first before you can see whether it will work. This was, in fact, how
cathedrals were built in Europe. A fair number were constructed, fell down, and then were rebuilt with
more extensive supports.

The problem is that Hooke focused on individual objects, rather than the materials of which they were
made. He could tell you about an individual rope or beam, but was unable to make predictions about a
new one. To give a specific example, Hooke could not answer the question: “I know the constant k for
this particular beam. What will the new constant k' be if | make a beam of the same material which is
twice as long?”

Focusing on materials instead of objects
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The key to answering this question is to focus on materials. To begin, let’s think about a toy model of
what a solid object is like. Solids are built of atoms more or less locked in place by bonding with their
neighbors. You can think of this as an array of atoms held together by rather stiff springs.

It I apply a force which is spread out over the top of this solid, it will have to squash all of these springs at
the same time. If | apply the force to just a little spot, it will have to squash only a few springs. This is
easier to do, so that same force applied to a small spot will squash things more; it will create a larger
distortion.

To quantify this, consider a 1 and 2 spring model, where each individual spring has the same spring
constantk . This would be the case, for example, for each of the little springs that connect the atoms in a

solid. If 1 apply a force F to one spring, it is compressed a distance Ax = F/k . If | put two such springs
in parallel, the combined spring constant will be 2k, and the same force F will compress them only half as
much: AX,ing = F/2K .

You can see from this example that what matters is the force per spring. If | measure the force per spring,
all objects which are made of this material (whether big or small) will behave the same way. Now we
can’t actually measure the “force per spring” unless we know exactly how far apart the atoms are. So
instead, we account for this by asking whether the force is spread out over more springs or fewer. We can
do this by measuring the area over which the force is applied. If we double the area, the force will be
applied to twice as many springs. If we halve the area, the force will be applied to half as many springs.

So instead of just measuring the force applied to an object, what we will care about is the force per unit
area. In this application the quantity force per unit area is called the stress, and it’s defined as:

Force F
Stress = =—=0
Area A

Here F is the total force, and A encodes the area (proportional to the number of atoms) over which this
force is applied. The symbol o is usually used for this quantity. Notice that stress is really the same as
the more familiar pressure. There’s no clear distinction between the two, though the term pressure is used
more often in cases of fluids, as for air pressure or hydrostatic pressure.

Now think about the displacements in a real material. When we press on a single spring with a force F it
compresses by an amount Ax = F/k . Now imagine | have two springs stacked on top of one another. We
would say these springs are ‘in series’ with one another. In this case each spring will compress by a
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distance AX , because the same force will be transmitted through both, one after the other. Since each
spring will be squashed, the combination of two springs will compress twice as much as one. This is
somewhat tricky, so think about it carefully.

What matters for displacement is the compression per spring. Again, we can’t really do this ‘per spring’
without knowing exactly how far apart the atoms are, so instead we use the thickness of the material as a
way of tracking whether there are more or fewer atoms. If the material is twice as thick, there will be
twice as many atoms and the material will compress twice as far.

To keep track of this, we measure not just the change in length of the material (AL ) but the fractional
change in length, which is called the strain. It is defined as

. AL
Strain=—-=¢
L
Here AL is the total displacement of the object, how much its length changes, and L is the object’s total
length. The symbol ¢ (the Greek letter epsilon) is usually used to denote strain.

Stress and Strain: avoiding the obvious confusion...

Using the words “stress” and “strain” brings us back to the problem of using ordinary words to describe
physics concepts. In everyday language, both stress and strain mean something similar. But in physics
they mean very particular, quite different things.

The stress is a measure of how much force per unit area is applied to an object. It has units of N/m2 The
strain is our measure of how much an object is distorted by the stress which is applied to it. Strain,
measured as the ratio of the distortion AL to the total size L, is dimensionless.

You’ll have to find a way to remember, unfailingly, the difference between these two. One way is to
practice the mantra: “stress causes strain...stress causes strain...stress causes strain...” until you can’t
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think of it any other way. If you invent some other good mnemonic for this please share it with your peers
and your instructor. It’s been a problem for students throughout the ages. Maybe you can solve it.

4.5 Stress causes strain: a material dependent version of Hooke’s Law

For every different kind of material, there will be some relation between stress and strain. If you apply a
stress o, you will measure a strain . Very often it is the case, at least for small stresses, that the stress
and strain will follow a simple, linear relation. Now, although you would probably do the experiment by
applying a stress and measuring a strain, people usually graph this relation by showing the stress as a
function of the strain.

This harks back to Hooke, who wrote his law F = kAx . He wrote it as if the force was a

applied to the object

function of the distortion Ax , rather than the distortion a function of the force. Echoing Hooke, we write:

stress = constant x strain or o=Ee¢

Note that this equation does not describe an object; it describes a material. If you make an object of a
material you have studied in this way, you can predict how it will behave. Remember too that this linear
relation definitely does not describe the relation between stress and strain in all materials. It is true that
many materials have such a linear relation, at least for small stresses. But quite a few, and especially
materials which are used by living organisms, do not. We’ll talk more about this later.

The ideas of stress and strain, very important ones, were first discussed by Thomas Young, a remarkable
19" century scientist who we will encounter later introducing the concepts of work and energy to physics.
The focus on stress and strain, rather than force and distortion, for the purpose of understanding structures
was later codified and developed by a series of French theoreticians like Augustin-Louis Cauchy.

What is the constant ‘E’ in this equation?

stress o} %

in ET,TAL
strain € A
This constant is called the ‘“modulus’ of a material. Modulus just means “little measure” and is called this
because it is a property of the material. Since the strain is unitless, the modulus has the same units as the
stress, N/m?. For the simple case where the stress is either tension or compression (stretching or

squashing) the modulus is called Young’s modulus, and is usually denoted with a capital E (though
sometimes a capital Y is used).

constant =
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Some Young’s moduli:

Material E

Tendon 0.6x10° N/m?
Oak 14x10° N/m?
Marble 50x10° N/m?
Steel 200x10° N/m?
Diamond 1200x10° N/m?

Let’s work through an example to see what Young’s modulus means in practice. Consider the simple case
of a rod in tension. We can create a situation like this by hanging a large weight, with massM from a rod
with length L and cross-sectional area A . We will ignore the weight of the rod.

Stress in rod = modulus x strain

Mg _ AL
A L
A Mol

A E

If you double L, you double AL . If you double A, you halve AL .

Consider wood, which has a Young’s modulus E ~10'° N/m?. If | hang a 1000 N weight ona 1 cm x 1
cm x 10 cm piece, | will get a stretching:

AL_(LJL_[ 1000 N Jo.lm_lxlo4 m=0.1mm

AE (0.01m)* (10" N/m?)

A 1000 N weight is something with a mass of about 100 kg, a good bit more massive than a typical
college student. So even if you hang from a piece of wood only 1 cm x 1 cm square and 10 cm long, you
will stretch it by less than 0.1 mm.

These very large Young’s moduli imply that it is quite difficult to either stretch or compress a solid. It’s
this property that human engineers like, and why they choose such stiff materials for constructing things.
An engineer likes to know that a certain part will always stay the same size (at least very nearly)
regardless of what you do to it. As we will see in a bit, most biological materials are quite different from
this, and have many attractive features that our engineering materials often lack.
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Stress, strain, and the scaling of living things

Now that we have recognized the importance of stress for understanding structures, we can resolve an
enormous range of interesting questions about life. One of the most obvious differences between large
organisms (think dogs to elephants) and small ones (think aphids to birds) is sturdiness. A rhino is a solid
thing, with thick legs held straight beneath its body. If | showed you a picture of such a beast, even
without any scale information, you’d know this was a massive creature. A spider, by contrast, has
absurdly long spindly legs, stretching way out to the sides. You never see such ungainly structures in
creatures as large as rhinos.

The reason for this difference lies in scaling laws. Imagine a simple rhino model with four straight legs.
As we have often argued, the volume (and therefore mass and weight) of the rhino will vary like the size
of the rhino cubed. Meanwhile the area of its legs will vary like the size of the rhino squared. This implies
that the stress in the rhino’s legs, which is force per unit area, will vary like:

If you increase the size of a rhino by ten times, the stress in its leg bones will increase by a factor of 10.
Remembering that the material making up the bones stays the same, you can see how just making an
organism larger becomes risky very fast.

For this reason, large animals have different shapes from small ones. They have evolved proportionately
thicker legs. They have also adopted postures which tend to keep the legs straight and directly under the
body. On the other end of the size spectrum, tiny organisms have no trouble at all keeping the stress in
their limbs low. As a result, they can adopt a much wider array of shapes, with long spindly legs that
allow them to walk uninterrupted over the extremely varied terrain they see at their size.

Can you tell which is smaller?

—

You can see that an appreciation for how materials support loads, of the importance of stress, helps us to
understand a lot about the diversity of form we see in living things. Organisms don’t simply choose the
shapes they take. These forms are, in a very real way, imposed on them by physical constraints. There is
much more we could say on this topic®.
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Other kinds of stress and strain

There are several other kinds of stress and strain. Since they affect the “springs between the atoms”
differently, they have to be accounted for differently. The first new kind of stress is called “shear”. Shear
is what happens when you try to shove the top of something sideways relative to the bottom. As an
example, consider laying a textbook on the table, then sliding the front cover of a textbook to the left
while pushing the bottom to the right.

7/l

Stress = ﬂ Strain =ﬂ
Area of top L

These are called ‘shear stress’ and “shear strain’. The usual relation between the two would be written:

O-shear = S‘g‘shear % = S (%j

For every material there is a constant associated with the response to this stress. For shear stresses this is
called the shear modulus and usually denoted S. Shear stress tries to make one layer of a material slide
over another. Sometimes this is much easier than squashing two layers of a material together. As a result,
the shear modulus and the Young’s modulus can be very different. To know how a material will respond,
you need to know what kind of stress is applied to it.

A third kind of stress and strain is called bulk stress and strain, or “hydrostatic” stress and strain.

— 4_5_
F . AV
Stress =—=B yoqmc and  Strain=—
A \Y

This is the kind of stress and strain encountered when the object is under pressure which squeezes in from
every direction, like when it is deep under water. For this we write:
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F AV
OBMk::'_Bébmk or 7K::__B(}K7_j

For every material there is a constant associated with the response to this stress as well. For bulk stresses
this is called the bulk modulus and usually denoted B. Notice that in the equation for bulk stress and
strain we include a minus sign. This is because hydrostatic stress is different in nature from the other
stresses we have considered: it acts in every direction! For tensile and shear stress, the force creating the
stress acts in a particular direction, and the strain is in that direction. Bulk stress is different, it always
pushes inward, and when it is positive, it causes a decrease in volume. So in this case, we include a minus
sign, so that a positive pressure (stress) produces a decrease in volume (strain). Sometimes the relation
between bulk stress and bulk strain is characterized in terms of the “compressibility”, defined as the
inverse of the bulk modulus of the material.

You can see how closely related these three stress/strain relations are. They’re all just expressions of the
basic model of a solid as a collection of springs connecting atoms.

4.6 Limitations to the “Hooke’s law’ model of linear stress/strain relations

Hooke’s law is a linear model of how stress creates strain. It is an empirical, phenomenological, law.
Many materials behave like this under modest stresses. We certainly expect it to break down eventually. It
can’t be right when the stress becomes large enough to break the object. Likewise, we know that there are
materials with more exotic behaviors. Let’s talk about these limitations in turn.

Strength: plastic deformation and rupture
What happens if the stress becomes too large, and you stretch the object too much?

First, it stops behaving elastically, and no longer returns to its original shape when you remove the stress.
For each material, this happens at a stress which is called the ‘elastic limit’ of the material. If the stress
rises above this, the material will become ‘plastic’ and permanently deform. This behavior might be
familiar to you if you think about bending something made of metal, like a paper clip. Bend it a little, like
when you use it normally, and it springs back to its original shape. Bend it a lot, and it stays permanently
deformed. This plastic deformation can, of course, be very useful, allowing us to make new shapes using
materials which are ductile, like metal and clay. The word ductile describes things which can be
plastically deformed without breaking. It is the opposite of brittle, which describes things that break
before they will plastically deform.
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Eventually the material breaks. We sometimes talk about this happening at the ‘breaking stress’ of the
material. But what actually happens when things break is much more complicated. We will look at some
features of tearing and shattering after we discuss energy. Since stress is related to strain in materials, we
could talk about either the breaking stress or the breaking strain of a material. Which one we use may
depend on the application.

We can divide materials up in several interesting ways based on how they break:

e “Strong” material: high breaking stress (supports big loads)

o “Weak” material: low breaking stress (can’t support big loads)

o “Stiff” material: low breaking strain (can’t be stretched much before breaking, no
matter how large that stress is...)

o “Flexible” material: high breaking strain (can be stretched a lot before breaking)

Here are some illustrative examples of various kinds of materials:

Steel: stiff, and strong

Biscuit: stiff, but weak

Silk fibers: flexible and strong
Jello: flexible and weak

Nonlinear, non-Hookian flexible materials

Most man-made objects are made of relatively stiff materials that have linear stress/strain relations
extending to a large fraction of their breaking stress. They are mostly dry, hard, solids which behave more
or less according to Hooke’s law.

By contrast, most biological structures are often made of wet, squishy stuff which doesn’t obey a linear
Hooke’s law stress/strain relation. These materials are flexible, able to stretch a lot before breaking, but
still very much elastic. They easily deform and then spring back to their original shape. Nonetheless, they
are often quite strong, with high breaking strains.

For many of these squishy materials, like your flesh or tendons, the stress vs. strain curve takes a shape
called the J curve:

What does this “J curve’ stress-strain relation imply?
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e Small stress (o) creates a large strain (&) in the beginning

e Gradually, the additional stress required to increase the strain becomes larger and larger.
The “stiffness” increases as the strain becomes larger. This might be expressed by saying
that the stiffness is proportional to the slope of this curve of the stress vs. strain curve at
each value of strain. Remembering that the Young’s modulus is also the slope of the
stress vs. strain curve, this makes a lot of sense.

e At large strain, the material becomes very stiff indeed. To stretch it any further you have
to increase the stress very substantially.

You can confirm this general kind of behavior for one biological material rather easily; your earlobe. Try
tugging on it. At first, it stretches a lot even when you pull just a little. Eventually though, you reach the
steep part of the J curve, and you have to pull a lot harder to get it to stretch even a little bit further.

Why does nature use materials like this? What are the advantages?

e The easy ability to reach large strains eliminates the requirement for very fine tolerances
in construction. To pick something up, you don’t need a hand of exactly the right size. A
small force allows your hand to distort, fitting snugly whatever you try to pick up. Try
picking up a can of soda with a pair of metal tongs and you’ll quickly see this advantage.

e Such materials are robust against shattering; imagine a window which could ‘give’ and
freely change shape when hit by a baseball. Such a window would be able to spread the
force of impact over a large area and hence wouldn’t shatter.

Examples of times when it pays to be easily flexible: an octopus squeezing itself into a
protective shell borrowed from a clam, and a bunch of kids squeezing through a fence to
get into a hockey rink.

It is possible that this kind of ‘organic’ design will expand its influence in human design. For example,
perhaps one day cars will become squishy, protective things. Certainly flexible plastic bumpers and air
bags are steps in this direction. Steven VVogel, a Professor of Engineering at Duke University, has written
a charming book about the relation between human design and evolved form. Called “Cat’s Paws and
Catapults™, it compares fundamental elements of human and natural technology, noting that:

“Natural and human technologies differ extensively and pervasively. We build dry and stiff
structures; nature mostly makes hers wet and flexible. We build of metals; nature never does. Our
hinges mainly slide; hers mostly bend. We do wonders with wheels and rotary motion; nature
makes fully competent boats, aircraft, and terrestrial vehicles that lack them entirely. Our engines
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expand or spin; hers contract or slide. We fabricate large devices directly; nature's large things are
cunning proliferations of tiny components.”

If you’re interested in learning more about the differences in these two technologies, VVogel’s books on
the topic are a great place to start.

A particularly dramatic, and perhaps disgusting, example of the flexibility of biological materials is seen
in ticks. Since blood is mostly water, blood feeders like ticks must be prepared to substantially expand
their bodies when they eat. Very often, these arthropods eat ten times their own mass in a single meal,
quite literally blowing up like a balloon. This picture shows two
ticks of the same species, Amblyomma hebraeum. The small one
is the normal form, prior to a meal, while the large balloon the
first stands on is the second, fully engorged tick.
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A Quick Summary of Some Important Relations

Conditions for equilibrium:

YF =0 and 7 =0

every center

Weight and center of gravity:

The pull of the Earth on an object, its weight, can always be taken to act at its center of gravity, which for
our purposes is its center of mass; the mass-weighted average position of the object.

Hooke’s law for objects:

Obijects respond to loads by yielding to them. For many objects the amount of distortion is proportional to
the load, and is well described by Hooke’s law:

F k AXx F k Ax

applied to object = object pushing back ==

Stress and strain for materials:

Within an object, we measure stress and strain, rather than force and displacement. There are three kinds
of stress and strain discussed here: tensile (or compressive), shear, and bulk. They are defined by the
following relations:

F F

O-tensile = O-shear = A o-bulk = Phydrostatic
'%Iong F L toF
AL AX AV
& . = — & = — & = —
tensile shear bulk
L L \

In engineering materials, stress is often linearly proportional to strain, and in each material the constant of
proportionality is called the ‘modulus’ of the material; either the tensile (or Young’s) modulus, the shear
modulus, or the bulk modulus. In most biological materials, stress is not proportional to strain, and a
stress-strain curve is required to describe how the material responds when stress is applied.

! Labarbera, Michael, “The Strange Laboratory of Dr. Labarbara”, University of Chicago Magazine, Oct-Dec, 1996
% Vogel, Steven, “Cat’s Paws and Catapults: Mechanical Worlds of Nature and People”, W.W.Norton, 1998.
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5. Getting around: friction and motion
1) Different kinds of force ‘laws’: phenomenological models vs. fundamental forces
2) Resisting relative motion: how friction acts
i. Da Vinci and two tendencies of solid friction
ii. A linear model: the coefficient of friction
3) Frictional forces and practical examples of motion
i. Sticking vs. slipping: static and kinetic friction
ii. Examples of the role of friction: lifting and standing
4) Origins of friction: adhesion and surface roughness
i. What are solid surfaces like?
ii. Stick and slip friction: x, and g,
iii. How large can u, be?

iv. Why is friction independent of contact area?
5) Breaking the ‘rules’ of friction
i. The J-curve and sneakers
ii. Rolling motion
6) Moving through air and water: fluid friction in two extremes
i. Large things moving fast
ii. Small things moving slowly
iii. Terminal velocity

Physics of the Life Sciences: Chapter 5

5.1 The place of friction in motion

Now that we have learned a bit about statics, about the balances of forces and torques needed to keep
objects in place, it’s time to delve a little deeper into how some of these individual forces come about. In
this chapter we will concentrate on friction, a very important player in the lives of organisms, and in all of
our technology. Without it there is no way we could get around at all.

Friction is the tendency of objects in contact to resist relative motion, to stick together. It is the dominant
factor in most motion which we observe in our world. Its tendency to bring any moving body to rest is
what so reinforced the Aristotalean view that "motion implies a mover". Because of the resistance which
friction provides, experience suggests that a continuous force is required to keep something moving. To
uncover the real principles of dynamics, Galileo had to imagine a world without friction. In such a world
motion could be perpetual, and no force at all would be required to maintain it.

Constant motion is as natural a state as rest. Because of this, Newton focused our attention on forces as
the cause of changes in motion. He also showed that to predict the motion of an object, all you need to do
is to understand the forces which act on it. So if we wish to understand the influence of friction on the
motion of bodies, we need to understand how to predict the magnitude and direction of the frictional
force.
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We will start by examining one particular kind of friction, the sliding friction which occurs when two dry,
solid surfaces slip across one another. This is the force which causes a book to slow to a halt when you
slide it across the table.

Force laws: phenomenological and fundamental

To understand complex forces like friction, we often will seek a “force law’. Such a force law is a
mathematical model, an equation, which will tell us how large a force on a body would be if it had a
particular set of properties (such as mass, composition, surface condition etc). Establishing force laws is a
basic task in physics, and the force laws which we derive tend to fall into two categories: fundamental and
phenomenological. As we have seen, there are only a few fundamental forces. But these forces often act
in complex ways which are better described by approximate phenomenological force laws. We don’t
mean to suggest that phenomenological force laws are not accurate reflections of reality or that they aren’t
“true”. Such models are sometimes extremely precise. It’s just that by acknowledging that they gloss over
details, we confine these models to being “true” with a lower-case t. We know for sure that there are other
details hiding beneath the general principles these models encode.

To find a force law, we first try to describe the basic behavior. We try to predict correctly the
approximate size and direction of forces; to understand approximately how these forces will change when
we alter the objects in question. We might call this understanding the problem in the "first
approximation". Once we have a handle on the basic behavior, we look at things at the next level of detail
(in the second approximation), and so on. Phenomenological laws are never perfect, but they can be
enormously useful, and in complicated cases like friction they are absolutely necessary.

It’s worth remembering here that the structure and behavior of living systems is often extraordinarily
complex. As a result, living systems almost always require description with this sort of phenomenological
approach. Quantitative models of biological systems almost always begin simple, then gradually add
complexity, and accuracy, in this way. Mathematical modeling of this kind is an increasingly important
part of life science research. New work in these areas is very vibrant, and is reflected in research
programs with names like Mathematical Biology, Biostatistics, and Complex Systems.

5.2 How does friction act?

Friction always acts to resist relative motion between two surfaces which are in contact. Let's consider
two examples to see what this means. First the simplest: imagine | slide a block over the table. I push it
for a bit and then let it slide to a halt. While it is sliding to a halt the friction between the surfaces will
generate the force which acts to prevent this motion, slowing the block down until it stops.
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In this case, the frictional force acts in a direction opposite to the direction of motion. When friction acts
in this way it tends to bring things to rest. This is the kind of frictional effect which led Aristotle to
conclude that the natural state of objects was at rest.

Now let's consider another case. A heavy block sits at rest on a surface. | touch it on the side with my
finger and apply a force; but the block doesn’t move. It remains at rest. Why?

Fn
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I:push

Since we see the block remain at rest, some force must balance the push I applied, keeping the net force
on it zero. This balancing force, which only appears when it’s needed to oppose my force, is also a
frictional force.

For reasons which we will describe in a minute, we think of these two examples as involving two
different kinds of friction. The first case, in which the two objects are already in motion relative to one
another, is called "kinetic" friction, because it refers to objects which are in motion. Once they are in
motion, this kind of friction acts to oppose their relative motion. The second kind of friction, acting before
the objects begin to slip, is called "static" friction. Static friction acts to prevent objects from beginning to
slide over one another.

We generally think of friction as something which prevents motion, but this is selling it short. In fact
friction is essential to creating motion, as the following two examples should reveal. Consider our heavy
block again, but now imagine that it rests on the bed of a flatbed truck. As the truck begins to move
forward, a force is required to move the block along with the truck. The force which does this is a
frictional force; it pulls the block forward with the truck in an effort to prevent relative motion between
the block and the truck. In this case, the frictional force creates the motion of the block. Without it, the
truck would be unable to start moving without leaving the block behind.

Truck
starting Fy
.. _ tomove

ie@' o

Consider too how it is that you start to walk. When you stand at rest, there is no frictional force between
your feet and the ground. It acts to prevent relative motion. Nothing is trying to create relative motion
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when you stand there, so no frictional forces act. If you want to start walking forward, you begin by
pushing backward on the floor with your foot. When you push backward on the floor with your foot, the
floor pushes forward on you. The interaction between your foot and the floor is a frictional force; it is
resisting relative motion (slipping) between your foot and the floor. The force which allows you to start
moving forward is the forward frictional force the floor applies to you in response to you pushing
backward on it with your foot. Without this frictional force, it would be impossible for you to begin
moving forward, as I’m sure you know if you have ever tried walking on wet ice.

Fn
I:foot—ground lw
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Notice that in both of these cases (starting the truck and walking) the friction which acts is static. It is
acting to prevent relative motion, between the block and the truck and between the foot and the ground,
and in both cases the frictional force is large enough to succeed in preventing relative motion.

So friction is really omnipresent and essential. Without it everything which began moving would continue
moving forever; the world would be a crazy jumble like the atoms in a gas. Everything about our ability
to start and stop, move where we like, hold a pencil, relax in a chair; it all ultimately comes from friction.

Two tendencies of sliding friction:

The size of frictional forces between two dry solids can be modeled reasonably well using two principles
first uncovered by Leonardo da Vinci. Leonardo was an eclectic genius, interested in both the practical
and aesthetic arts. He studied friction for a typically complex mix of practical and aesthetic reasons.

During his time, it was thought that the planets were held in their orbits by a set of solid concentric
spheres, each of which rotated at a different rate. From classical times it was thought that the true scholar,
understanding the beauty of this arrangement, would hear the "music of the spheres", a kind of divine
symphony. Leonardo thought perhaps this music was generated by friction between these spheres as they
moved relative to one another. His attempts to understand worldly friction were driven, in part, by his
desire to experience this divine music.

Da Vinci’s two principals are simple rules about the forces which resist the sliding motion of two solid
bodies over one another:

1. The force of friction resisting the relative motion of two bodies is directly proportional to the
normal force between the two bodies.

2. The force of friction resisting the relative motion of two bodies is independent of their area of
contact and the rate of motion.
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The first assertion sounds reasonable; the harder you squeeze two objects together, the more difficult it is
to slide them over one another. The second is somewhat surprising; we will see a bit later why it is the
case. Remember that these two rules are nothing like absolute laws; they’re just general principles that
capture the main features of friction in some cases, especially for two dry flat surfaces.

The coefficient of friction

These two rules for friction allow us to construct a mathematical model for how large the friction force is.
We’re hoping to write an equation which says:

F =7

friction

The first rule says that F is directly proportional to the size of the normal force between the two

friction

objects. The second rule says that F does not depend on the area of contact or on the rate of motion.

friction

So we know the area of contact and rate of motion won’t appear in the equation. This allows us to write:

I:friction oc I:N

We know F

is large, there will be a lot of friction between the two objects. If it is small, there will be little. The
magnitude of this proportionality constant depends on the properties of each of the surfaces. For surfaces
made of any pair of materials, like steel and wood, a single proportionality constant is usually enough:

is proportional to F, but what determines the proportionality constant? If this constant

friction

|:friction = /'lsteel—wood I:N

Where L. wooa 1S the “coefficient of friction” which applies to an interface between steel and wood.
Note that since this coefficient relates two forces it is unit-less; a pure number.

This coefficient of friction depends mostly just on the composition of the two surfaces which are in
contact. Here are a few examples:

Brick on wood: Hovickwood = 0.5
Ice on Ice: Hicoice = 0.025
Copper on copper: Heopper—copper = 0-9

The coefficient of friction is a measure of how freely surfaces of two materials stick to one another. When
the coefficient is high, the surfaces stick together quite a lot. When it is small, they stick together very
little. Using the example of brick on wood, we would find:

Ffriction = /ubrick—wood FN = OSFN
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So in this case, the size of the force of friction would be about half the size of the normal force pushing
the two materials together.

5.3 Frictional forces and practical examples of motion:

To understand how friction acts, it’s useful to start with a simple case where the motion is on a horizontal
surface. Imagine you place a book on a table and push on it with a horizontal force. If the force is too
small, friction will hold the book in place. When you push very lightly, there is a small frictional force
holding it in place, because only a small force is needed. When you push harder, the frictional force
becomes larger. Eventually, when your force becomes large enough, the book will break loose and start to
slide. Once this happens, a force is still required to keep the book sliding, but you will usually find that
the force required to keep it moving is less than that required to get it started. Try this yourself and you
should be able to get a sense of how it works.

What is there to notice here? First, you can see the difference between static vs. kinetic friction. Static
friction is a passive force; it adjusts its value to be just what it has to be to keep the object from moving.
As you increase the force with which you push on the book, the static frictional force increases just in step
with to prevent the book from moving. It will keep increasing up to some maximum point, at which the
book breaks free and begins to move.

We generally find that this maximum static frictional force depends on the nature of the surfaces in
contact, together with the normal force, in just the manner described above. That is:

F static-max ., , ,these surfaces F
fricion = /s N

In this equation, s is the "coefficient of static friction", and F is the normal force preventing the book

from moving through the table. Remember that this equation describes the maximum static friction force.

F static
friction

Because static friction is passive, the actual is whatever it has to be to prevent the object from

sliding. It can take any value from zero to the maximum value given by the above equation. Be very
careful about this distinction when you attempt to understand static friction problems.

Once we apply a force large enough to overcome static friction and make the book begin to slide, kinetic
friction becomes the relevant force. Kinetic friction is better considered an active force than a passive one.
Its magnitude is determined all the time by the equation:

F kinetic ~ , these surfaces F
N

friction — /~k

In this equation g4 is the "coefficient of kinetic friction" and F is again the normal force between the

two objects. So once the book is moving, the frictional force becomes independent of the size of the force
you apply and independent of the rate of motion. It depends only on the size of the normal force.

Let's think about this for a moment. You apply a force to get an object moving. If you start out with a
small force and gradually increase it, the object will first remain at rest, as the static frictional force

gradually increases to match your push. Then, when your push exceeds £ F,, the object will begin to
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move. Once it is moving, regardless of the force with which you push, the friction force which resists
motion will always be 4 F,, . Since this frictional force is now constant, different things will happen
depending on how large the other applied forces are.

F kinetic
friction

If, once it starts moving, you apply a force less than (perhaps by no longer pushing) the

unbalanced frictional force will decelerate the object and slow it down. If you apply a force larger than
F kinetic
friction ?

the unbalanced part of your force will accelerate the object forward. Only if you apply a force

F kinetic
friction 1

exactly to no more and no less, will the object move along the surface at constant speed, because

only then will the net force along the surface be zero.

This is just what happens when you try to push something heavy (let’s say a cabinet) across the floor.
When you first push, it goes nowhere. Then you shove harder, and eventually it breaks loose and starts to
slip. Once this happens you adjust your force (not too hard, not too weak) so that it slips along at a
constant rate. The rate of motion now is not set by how hard you push (you’re always just balancing the
friction, which is independent of how fast the cabinet moves) but rather by how quickly you’re prepared
to move along with it.

Coefficients of friction: static and kinetic

The constants in these equations, the coefficients £, determine the sizes of frictional forces. Their values

depend primarily on the composition of the two surfaces which are placed in contact. In detail, they
depend on many other things, such as how the surfaces are prepared (are they rough or smooth), and the
temperature of the surfaces. But for starters we will stick with the most important factor, what the
surfaces are made of. Some examples:

Materials y7A H
Steel on Steel 0.6 0.4
Rope on wood 0.5 0.3
Tires on dry concrete 1.0 0.75
Tires on icy concrete 0.3 0.02
Teflon on teflon 0.04 0.04

A larger table can be found here:

http://www.roymech.co.uk/Useful Tables/Tribology/co of frict.ntm#coef

and in many other places online.

There are several patterns among these coefficients worth noting. First, the static coefficient ps is larger
than the kinetic coefficient py for almost every set of materials. It is harder to start something sliding than
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to keep it moving. If you have ever tried to move furniture you will have experienced this. You push hard
trying to get something sliding; once it breaks free, it slips along more easily.

The one exception to this general rule shown here is Teflon, for which s = . Because of this, it is as
easy to start sliding motion with Teflon as it is to maintain it, there is no sudden jerk as the two surfaces
break free. This property makes Teflon on Teflon contacts very useful for artificial joints, like knee
repair. Try moving some of your joints, bending your elbow for example. There is no obvious need to
apply an extra large force to get the motion started. This is because your joints, unlike the dry interfaces
discussed here, are nicely lubricated.

Second, there is a relatively large range of coefficients of friction; they vary from 0.02 to 1.0, another hint
that what's really going on here is complicated. And remember, all we're talking about here is the contact
between clean, dry surfaces. Imagine how many more different coefficients we would have to know if we
wanted to predict the frictional forces for surfaces with varying degrees of contamination, or surfaces
which are wet or otherwise lubricated.

This is what we mean when we say these simple laws of friction are a "first approximation™ and
"phenomenological”. They are not a wild guess; real objects do behave in roughly this way. But such
phenomenological laws are only capable of giving us a ballpark idea of what's going on. We must use
them with caution. What are the essential points? Friction between two dry solid surfaces is
approximately proportional to the size of the normal force between the surfaces. The relevant constant of
proportionality depends on the nature of the two surfaces in contact. Also, the size of a frictional force can
vary when there is no relative motion, but is approximately fixed in size when the two surfaces are
slipping over one another. With these basics in hand, let’s consider some examples of how friction acts.

Examples of the role of friction:

Let's consider two typical examples of friction. The first involves a book slipping down a slope. Imagine a
book sitting on a board, arranged so that we could gradually increase the angle the board makes with the
horizontal. What happens?

As we increase the angle @, the force with which gravity pulls the object down the slope gradually
increases. For a while, the static frictional force increases in step with this, balancing the downward pull
of gravity so that the block will remain in place. But at some point, the pull of gravity down the slope
overcomes the maximum possible static frictional force, and the block slips.

F+

W =mg
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Now let’s analyze this situation. To begin, we draw the situation when the board is tilted at some
particular angle @. Then we draw a free body diagram for the book, showing the three forces which act on
it. Given this FBD, we should sum the forces along different directions. In this case, the block is free to
move only along the slope, and can’t move at all perpendicular to it. So we will sum the forces along and
perpendicular to the slope.

Before the block begins to slide we have:

ZFing e =M SIN(0) ~ Fii =0 o Fiaie, =mgsin(6)
EFperpendicular toslope — FN —mg COS(H) =0 or FN =mg COS(H)

But remember, there is a maximum static frictional force, it cannot be larger than 42°***“F, . Since the

frictional force required to keep the book in places increases from zero when @ =0 continuously until it
slips, we can use this information to calculate the angle &, at which it will start to slip. This will happen

when:

static book—board H
I:friction = lustatic I:N = mg sin (aslip)

And since we know the size of the normal force, we can write:

lusbook—board FN _ ,U:Jook—board mg C05(95np ) =mg sin (95np ) or luéwok—board —tan ((95|ip )
And find that the angle where it will slip is:
Hslip — arctan (lugook—board )

Notice what's going on here. There are two effects. First the frictional force required to hold it on the
slope is increasing as we increase the angle 8. Second, the maximum available static friction is
decreasing as we increase &, because the normal force between the surfaces is decreasing. Both these
facts tend to make objects slip down slopes more easily.

This application of the laws of friction tells us that for a particular coefficient of friction, there exists
some maximum slope beyond which the object will slip. Surely this is familiar to you from standing on
slopes. If the slope is too steep, you slip downward. You probably have also experienced the important
dependence of this critical slope on the nature of the two materials. Stand on a slope in sneakers and you
can avoid slipping to quite steep angles. Do it in dress shoes (or on ice!) and the slope you can manage is
much less steep.

This result also suggests that the critical angle at which things will slip is independent of the size and
shape of the object on the slope. If you stand on a slope with a two year old, you’ll both start to slip at the
same angle. This might be somewhat surprising, but it’s a clear prediction of this result.
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Going back to the original example, once static friction is overcome and the block starts slipping, then the
friction becomes purely kinetic. Once that happens, we know exactly how large it is:

F kinetic

__, ,book—board book—board
friction — :uk I:N

= 14 mg cos(6)

Here is a second example for you to think about:

F
Fn
4—
Fpush Fnush W=mg

When you push a book against the wall with a force like this, will it slip up the wall, down the wall, or
remain in place? The only way to be sure is to work out the details. Since we don’t (until we work it out)
know what’s going to happen, let’s begin by imagining that the frictional force the wall applies to the
book acts upward. If we find it is different, the answer we get for it will contain a minus sign.

First we sum the forces along and perpendicular to the wall. We will call the direction along the wall the
y-direction, with up as positive, and the direction perpendicular to the wall the x-direction, with positive
to the right.

3F, =F,008(0)+F, —-mg=0 or F, =mg-F, cos(6)

SF =Fusin(@)-F, =0 or F =F,sin(0)

pus pus

OK, so far so good. Now we can apply what we know about static friction to write:

maximum book —wall book —wall H
F fic ::us " I:N =/us " I:push Sm(e)

static friction

Let's think about the limits. If F_ is small, then friction must help to support the book, to keep it from

sliding down. This is the case we guessed and drew in the diagram above, in which the frictional force
acts upward. There is some limit, some minimum force F needed to keep the book from slipping down the
wall. This limit is reached when:

F

static friction

=mg - F,y,, C0s(0) = t2*"F_, sin(8)

S

Or when
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_ mg
P eokvell sin () +cos (6)

S

F

There is also a particular combination of angle and force for which the frictional force required is zero.
This happens when:

P cos ()

F,=mg-F,,cos(0)=0 or F

Finally, if we push up harder and harder, we are trying to make the book slip up the wall. When this
happens, we can redraw the picture and rewrite the equations as:

FosnCOS(@)>mg so F,=mg-F, cos(d)<0

W=mg

In this case, the friction between the wall and the book is actually acting downward, rather than up. It is
trying to prevent the book from sliding up the wall. There is another limit to check in this case. If we push
too hard, friction cannot resist our pushing, and the book will begin to slip upward. This occurs when:
Fstn;g)éi?:ilgt?on = ﬂsbwk_wa” I:N = ﬂ:)ook—wall I:push Sin (0)
Putting this back into the equation for motion up and down the wall, we find how much friction is
required to prevent the book from slipping upward:
3F,=F . C0s(0)-F, -mg=0 or F,=F

y — ' pusl

» €0s(8)—mg

pusl

Comparing this to the maximum available static friction, we obtain a conditionon F

_ mg
push I:COS (9) _ lu:ook—wall sin (6’)]

/JbOOk_Wa" Fpush sin (6) = Fpush COS(H) —mg or F

S

Notice what | did with the signs! We have postulated the situation where the friction is holding the book
down, rather than up. So | have redrawn it with the force down, and added forces appropriately.
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Now this is a subtle, interesting relation. It says that the force required to make the book start slipping
upward is given by:

F o= L
push [COS(Q)_ﬂSbook—wall sin (0)]

This tells us some interesting things. What force is required if the denominator of this expression is zero?
In that case an infinite force would be required. This happens when:

cos(0)— u > "™sin(0)=0 orwhen g ** " = cos(0) =cot(6)

: sin(6)

So for an angle 6 of 60°, it would be impossible to make the book slide up the wall if the coefficient of
friction is more than ps = 0.58, and if the angle 0 is 85°, the required ps = 0.08.

What's interesting about this result is that it isn't completely obvious. Without this careful analysis we
might never have guessed that it is impossible to make an object slide up the wall under certain
circumstances, and we almost certainly would not have guessed that the limiting condition would be
independent of the mass of the book we're trying to slide.

5.4 The origins of friction: surface roughness and adhesion

The fundamental origin of this rich, important, and complicated force is of great intellectual and practical
interest, and we provide the briefest introduction to it here. To understand friction, you have to begin with
an idea of what the surfaces of ordinary objects look like. Are typical objects smooth or rough? The
answer depends on how you look at them.

Is the Earth smooth? You might say no. After all, the largest features on the Earth are about 9 km high.
But the radius of the Earth is about 6.4x10° m, so the Earth is smooth to about 0.1% of its radius. This is
far more smooth, in this fractional sense, than a typical glass marble.

Objects like books, marbles, and tables appear smooth on the macroscopic scale. But when we examine
them on an atomic scale, they are very rough, with peaks and valleys that are often many 100s of atoms
tall. We can do this now (look at surfaces on the atomic scale), especially using instruments like
Scanning-Tunneling Microscopes (STM) and Atomic Force Microscopes (AFM). What we find when we
image typical surfaces is something that looks more like the Alps than Kansas.

N

AFM of titanium nitride (TiN)
on silicon carbide wafer
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So when we put two surfaces in contact, it's rather like taking the Alps and turning them over on top of
the Himalayas. In such a case, the actual microscopic area of contact is a tiny fraction of the total
macroscopic area of the two objects. At the relatively few points where the objects do meet, the atoms
from the two materials may actually bond, and the materials stick to each other (or "adhere™). This
happens through the same kind of chemical bonds which hold the object themselves together. The
"sticking" of these points is what we perceive as friction.

Contact between two I
surfaces with no normal

force. They touch only at

a very small fraction of A
the total area.

Contact between two surfaces
with a nonzero normal force.
The microscopic area of A
contact increases as the normal
force increases.

It may be surprising to you that two solid surfaces in contact might bond together. After all, when you
place one piece of metal on another, they don’t typically stick together. This fact, that they don’t really
stick, is a consequence of the complicated structures of surfaces. If two surfaces are truly flat and clean,
on the atomic scale, they may bond together very strongly when placed in contact, so strongly that the
interface between the two pieces will become just another layer within the material. This is used
sometimes in a manufacturing process called cold welding.

With this picture in mind, we can start to understand da Vinci’s two rules and some other features of
friction.

The laws of friction and independence of area

Ultimately all friction is caused by this bonding between atoms, and all such bonds are due to
electromagnetic interactions between the atoms. The same interactions that hold matter together create the
stickiness which underlies friction. How large this effect is depends on both the materials you use and the
nature of the surfaces (polished so that many atoms come into contact, or Alps-on-Himalayas so that very
few come into contact). But since most surfaces are actually quite rough, the simple laws da Vinci first
discovered give a pretty accurate estimate of what will happen.

Probably the most surprising thing about sliding friction is that it doesn’t depend on contact area. How
can this be, particularly in light of the fact that friction is really due to adhesion? The trick to this, not
understood until at least the 1950s, is that friction does depend on the area of contact, but not on the
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apparent area of contact. It depends instead on the tiny bit of contact at the tops of those mountains, what
we might write ATCP \With this knowledge we can write

ontact

F microscopic
friction ontact

And for most solids, which are very rough indeed, this microscopic area of contact depends on how hard
you squeeze the two surfaces together:

microscopic F
ontact N

Hence:

I:friction oc I:N
This is a great example of how going deeper, looking beneath the first level of phenomenological laws,
can be revealing. Understanding the reason why friction is independent of contact area makes it possible

to better appreciate the limitations of this general rule, as we will see in a moment.
Stick-and-slip friction, ps, and py

A second interesting question we want to explore is why ps and py are different, and why p is typically
larger. When | try to move a stationary object | gradually stretch these “merged mountaintops”, causing
them to distort and resist the force which I apply. Once the object breaks free and starts to actually move,
what happens goes something like this:

e The distorted object breaks free at the surface, releasing the stretched points of contact which
spring forward until they "catch up™ with the bulk of the object.

e Then the two surfaces are again nearly at rest. New points of contact bond, generating a new
source of frictional force; the surface on top grabs hold of the surface below.

o As we continue to pull, these new contacts are stretched, until finally they break loose,
allowing the contact points to "jump” again.

This cycle, which is known as "stick-and-slip"” friction, is the reason why static and kinetic friction are
related in the way they are. Kinetic friction is really a bunch of repeated applications of static friction. In
each step the static frictional force builds up from zero to its maximum value, then breaks free and starts
again. Each time the bonds between these two surfaces break, the top material jumps forward. After this,
you have to build up the force to overcome static friction in this new spot. This makes the average value
of kinetic friction somewhat less than the maximum for static friction.

If you want to feel this stick-and-slip friction in action, try putting the eraser of your pencil down on the
desk, while you push down fairly hard. As you drag it across the table, it will perform just this kind of
stick-slip motion. The horrible shriek of chalk on a blackboard is also just this stick-slip happening, now
at a high frequency, so it generates a high pitched noise.
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How large can 1 be?

There is, in principle, no limit to the size of . It often seems that since F- = uF , that the frictional

force can never be larger than Fy. But this is not the case. Friction depends on adhesion, so it is possible
for the friction between objects to be much larger than Fy. This is just what we use glue to do, to make the
adhesion large enough to dramatically increase the maximum static friction. Then objects will not slip
over one another.

5.5 Breaking the rules of friction

As we have several times stressed, these rules are basic, but generally work well for dry, solid surfaces.
They don't work for a lot of practically important cases, especially for ones involving biological
materials. Substantial violations of these rules occur when the materials are neither dry, nor rigid. Many
biological cases are like this, in your joints for example.

In these lubricated cases, frictional forces can be very different from what is described here, depending on
factors like temperature and velocity, instead of just on the nature of the surfaces and the normal force.
There is often little difference between static and kinetic friction in these cases, which is why your joints
don’t experience the same jerky start that happens when you try to slide a cabinet across the floor.

A good technological example, drawn from biology, is provided by rubber shoes and tires. Rubber is a
substance which distorts quite easily, following something like the biological J-curve stress vs. strain
relation. The fact that it can distort so easily means that | can make the microscopic area of contact
between the rubber and a floor very large without pushing down on it too hard. This large area of
microscopic contact means a lot of adhesion, which in turn means large friction.

You can see the efficacy of this if you do a little long jump on a tile floor. Rubber shoes can provide the
relatively enormous frictional force required to stop you. If instead you place a sheet of paper on the floor,
and jump onto that, your feet will stick nicely to the paper, but the paper slide and you’ll land on your
can. You may have experienced this with hard soled dress shoes as well.

We can see how this might work by constructing a simple model. If we approximate this effect by saying
that, for rubber:

microscopic 2
ontact oc I:N

We would expect to find:

F

2
friction o FN

In fact this is approximately what we see for things like rubber tennis shoes.

Other violations of these general rules come from surfaces which are unlike the “typical" surfaces
considered here in other ways. It is possible to make extremely smooth and clean surfaces. This is often
done in machining to make something called "gauge blocks™ out of metal. If I clean two of these gauge
blocks carefully and put them together, they will form such a large area of contact that they will
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essentially merge into one block in a process known as "cold welding". All the atoms from one surface
bond with all the atoms from the other, and the surfaces essentially disappear.

An excellent biological example is provided by the wonderful feet of the Gekkonidae; small, colorful
lizards found in warm places around the world. Geckos are famously able to walk straight up walls, and
even across ceilings, in nocturnal pursuit of the insects they eat. While this has been known for millennia,
(Aristotle marveled at their abilities) the mechanism for this trick was not understood until around 2002.

It is now clear that the impressive adhesion of Gecko feet comes about from a relatively enormous contact
area. Each Gecko toe is covered with billions of incredibly finely structured “setae’ which can create an
enormous contact area with all kinds of surfaces, smooth or rough. This large contact area provides dry
adhesion easily able support the Gecko’s weight, allowing them to freely walk up walls and across
ceilings. These nanostructures are now being artificially manufactured, and we might expect new kinds of
adhesive-free couplings in the future.

5 micrometars
L

You can learn more about this, and watch some Geckos in action, in this TED lecture:

http://www.ted.com/talks/robert full learning from the gecko s tail.html

This remarkable approach to adhesion has evolved independently at least a few times, and is also found in
the feet of arachnids (jumping spiders) and insects (though these typically add an adhesive fluid as well).
It provides another nice example of convergent evolution. Friction is a sticky problem, and the limited
variety of good solutions has been repeatedly explored.
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Rolling friction

Another practically important example of breaking the ‘rules’ of friction is rolling motion. Why is it that a
wheel can roll along for so long, apparently unaffected by friction, while a box that you slide across the
same floor so rapidly skids to a halt? The very small friction associated with a wheel comes about
because, perhaps surprisingly, the point of contact between the wheel and the ground does not move.
Since there is no relative motion between the wheel and the ground, there is no sliding friction. How can
this be? Consider the picture below:

In this picture, we see a wheel rolling to the right at three different moments. As it rolls, the spot on the
wheel to which the arrow points is set down on the ground, then lifted off again. While it is in contact
with the ground, that spot on the wheel is not moving relative to the ground at all. This is why the friction
between the wheel and the ground is so small, and consequently why the invention of the wheel is such a
big deal. Wheels, balls, and other rolling objects move across surfaces with extremely little friction.
Taking advantage of this makes it much easier and cheaper to move things around. Imagine how difficult
it would be to get a car from here to Cleveland if you had to overcome sliding friction the whole way!

Rolling motion is a fantastic way to move with little friction. It is important enough in our technology to
make it the comparison of choice (“xxx is the greatest invention since the wheel””). Why then was the
wheel not discovered by evolution? This question was rather delightfully debated during the 1980s. On
one side, paleontologist Stephen Gould argued® that the wheel was too complex to evolve. He felt that a
rotating joint through which resources would have to be pumped was beyond the limits of what evolution
could accomplish. On the other side, anatomist Michael Labarbera pointed out® that wheels aren’t much
use unless you have a hard, flat surface to roll on. In the rare natural environments where these conditions
exist, like deserts with dry packed soils and small scale regions like leaves, rolling motion is used by
organisms as various as dung beetles, spiders, caterpillars, armadillos, and tumbleweeds. Indeed the wheel
is only used as the favored mode of transport by people in the right circumstances. Legs remain able to
explore a much wider variety of terrain, which is why we still walk around our houses, offices, and
classrooms.

5.6 Motion through air and water

When an object moves through a fluid (like air or water) it experiences a force of friction. This is familiar
enough if you imagine sticking your hand out the window of a moving car. What is the origin of this fluid
friction? As your hand moves through the air, it has to exert a force on the air to move it out of the way.
When it exerts this force on the air, the air exerts an equal and opposite force on the hand. This is why
airplanes need to run their engines constantly in flight; the force exerted by the engines just balances the
force exerted by the air friction.
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We would like to construct a mathematical model for fluid friction. Just as with sliding friction, fluid
friction is very complicated, and even a simple understanding of it will require considering several
possibilities. For fluid friction, there are two useful limits to consider. Which version is most appropriate
depends on the circumstances.

One limit occurs when the objects moving are "relatively large", moving "relatively fast", and the fluid
flows “relatively freely”. In this case the frictional force depends on the size of the object, its speed, and
the density of the fluid, in a manner which we can model in the following way:

large-fast
I:ﬂuid friction

~ 1 2
~ 5 C phig AV

In this equation, oy, is the density of the fluid (in kg/m®) and v is the speed of the object relative to the

fluid. The parameter A is the "cross-sectional” area of the object, the area you would see if the object was
moving straight toward you.

The remaining term C is called the "drag coefficient". Its value depends on the shape of the object and the
properties of the fluid. For typical objects, neither especially blunt nor elegantly streamlined, this drag
coefficient ranges in size from about a half to a bit more than one. So this kind of fluid friction increases
linearly with area of the object (more air must be moved out of the way), linearly with the density of the
fluid (more mass must be moved out of the way) and as the square of the speed of the object. If an object
goes twice as fast, the force which resists it becomes four times as large.

This drag coefficient C is, in a sense, a term we insert to hide all the details. That being so, why is there
still a factor of a half in front of this equation? We could simply absorb the factor of a half in the
unknown factor C, but the convention is to leave it separate like this. It’s worth remembering that the drag
coefficient can hide significant additional variation. The fluid friction experienced by a spread-eagled
skydiver is quite different from that experienced by someone falling head-first. Examples of drag
coefficients for various shapes are shown below.

Shape Drag
Coefficient

Sphere —> O 0.47
Cong —» q 0.50

Cube — D 1.05

Long

cytnoer —[__] 082
Short

Cylinder D 15

Streamlined
_— 0.04
Body -
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Fluid friction is important for organisms when it becomes large compared to other forces which act on
them, like their weight. For large organisms living in air, this happens only at quite high speeds, and the
obviously streamlined shapes needed to reduce the drag coefficient are restricted to a predatory subset of
birds. The large density of water makes fluid friction an important challenge for all aquatic creatures even
at relatively low speeds. It’s in the water that the dramatic streamlining has repeatedly evolved.
Examining the shapes of comparable but unrelated predators like tuna, dolphins, penguins, squid, seals,
and ichthyosaurs (an extinct group of marine reptiles) makes this rich case of convergent evolution clear.

The other limit for fluid friction occurs when the objects moving are "relatively small”, moving
"relatively slowly", through a fluid which flows “relatively poorly”. This last part is expressed by
something called the “viscosity” of the fluid. Viscosity is a measure of how much internal friction there is
in the flow of the fluid. Viscous fluids are things like honey, less viscous materials are things which flow
more freely, like air.

In this case of small, slow things in stickier fluids, the force of friction depends on the size of the object,
its speed, and the viscosity of the fluid. If the object is a sphere, the fluid friction will be well
approximated by:

F small-slow
fluid friction

~ 67277;,4 TV
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Where 7744 1S the viscosity of the fluid, r is a measure of the radius of the object, and v is the speed of

the object relative to the fluid. Notice that this kind of friction contains no “drag coefficient” fudge factor.
The reason is simple. In this small-slow case, the drag is almost entirely due to friction in the flow of the
fluid itself, and not to the inertia of the fluid. The amount of flowing which has to happen as the object
moves through the fluid is not very dependent on the detailed shape of the object. There is still room to
fudge however. What should this parameter r be? If an object is not round, you can estimate the friction it
will experience by choosing a length scale which roughly represents the size of the object when viewed
head-on.

The effect of friction on falling objects

How does fluid friction affect motion? Consider what happens to something like a ball falling through the
air. Let’s assume this is a sizable ball, so that the ‘large-fast’ form of friction will apply:

Ft = 1/2CpAv?

If we sum the forces in the y direction:

~W =1CpAv? —mg :%

ZFy = |:friction
Initially it’s not moving through the air, Fs = 0, and the object accelerates downward with an initial
acceleration g. Then, as it picks up speed, the frictional force increases, until eventually it reaches a
maximum speed for which the frictional force just balances the weight. Then the net force on the object is

zero, and its momentum no longer changes. When this happens, i—? =0, so:

F ~-W =1CpAvi-mg=0

friction

The speed at which this happens is called "terminal velocity". We can find it by solving the equation
above for the velocity:

2mg

v, o= —=
terminal
C P A

Notice what this tells us. It says that if we increase the area of the object A, V... is reduced. If we

terminal

increase the density 0, Vi ina 1S reduced. But if we increase the weight, V..., IS increased. More

erminal terminal
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important, it tells us how rapidly these things change. Double the weight and you get V2 times as large a
Vv

terminal *

There is a connection here to the scaling laws we have been emphasized at the beginning of this book. If
we just take an organism and scale it up in size, its volume will increase like size® (increasing the mass),
while its cross-sectional area will increase like size?. As a result the terminal velocity will increase like
size™. While this might seem a modest functional dependence, it can be a very large effect. The
difference in size between a mouse and a horse is about a factor of 70. This suggests that the terminal
velocity of a falling horse would be about 8 times larger than that of a mouse. This is why people say ‘the
bigger they are, the harder they fall’. The great early 20" century biologist J.B.S Haldane wrote a
delightful essay on scaling laws called “On Being the Right Size” which summed this up nicely:

You can drop a mouse down a thousand-yard mine shaft; and, on arriving at the bottom, it gets
a slight shock and walks away, provided that the ground is fairly soft. A rat is killed, a man is
broken, a horse splashes.?

If, instead of being large and moving fast, the object was small, traveling slowly, or moving through a
more viscous fluid, the friction force law would differ in detail. But an important point is that the motion
would be qualitatively identical. When you drop the object, it starts out with a downward acceleration g.
Then as it speeds up through the fluid, the frictional force resists its motion, gradually reducing the
acceleration until eventually it reaches a stable “terminal velocity” where the frictional force balances the
downward pull of gravity.

Using the force law for small objects which we wrote above, we’d find:

mg

67N a0ia Viemina =Mg ~ OF  V 6
Ts4ig "

terminal

Notice how this is different from what we found above. For these small, slow things in sticky fluids,
terminal velocity depends linearly on the mass. Something with twice the mass will reach a terminal
velocity twice as large.

Scales, free fall, and life

Life lives largely in fluids, either air or water. The interactions between living things and these fluids play
a huge role in life, allowing motion, providing oxygen, and carrying sound and scent to our senses. This
example of fluid friction and free fall is just the first encounter we’ll have with this very rich topic. One
thing it illustrates at the outset is that the way our fluid environment affects life will be very dependent on
scale. The behavior of very small things (individual cells and the world of tiny multicellular creatures) in
fluids is very different from that of the world of macroscopic animals.

Just to give one example, there is a class of microscopic things living in the ocean which are called
“plankton”. These are organisms so small that the frictional forces applied to them by the water they live
in easily overwhelm the downward forces gravity applies to them. Any little flow of water simply carries
them with it. In practice, many organisms have evolved means to enhance this, developing shapes which
increase fluid drag. This allows them to become somewhat larger while retaining their ability to take
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advantage of the free motion riding along with the fluid provides.
. _

Plankton are not entirely limited to water. There are things which, for at least part of their life cycle, take
advantage of fluid friction in the air to further their ends. Perhaps the most obvious are seeding strategies.
Fungi and plants, for the most part, cannot move. If their seeds are to spread they will have to be carried
by something else. Quite often, plants enlist mobile animals for this purpose. But many also take
advantage of the air, releasing very small seeds or spores, and often equipping them with mechanisms for
enhancing the friction between the fluid and the seed (think of the dandelion, cottonwood, or the little
maple seed propeller). Another quite beautiful example is the ballooning of baby spiders, which perhaps
you will remember from the end of E.B. White’s “Charlotte’s Web”.

Cottonwood seeds Maple seed Ballooning spiders
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A Quick Summary of Some Important Relations

A model for sliding friction between dry surfaces:

Friction between typical, dry, solid surfaces is generally proportional to the normal force, and can be
modeled as:

kainetic = :uk I:N I:sIatic < /us I:N

Keep in mind that kinetic friction is an active force, always the magnitude described here, while static
friction is passive, as big as it needs to be, up to the limit described by this equation. The static coefficient

of friction s is usually larger than the kinetic coefficient . Friction ultimately depends on the

microscopic area of contact between surfaces. When the microscopic area of contact is not proportional to
normal force, as in the feet of geckos, friction will not be well described by the simple model above.

A model for fluid friction:

When objects move through fluids the friction they feel is complex. It may be simply modeled in two
extremes: when objects are small and moving slow, and when they are large and moving fast.

F small-slow

F large-fast
fluid friction

~ ~ 1 2
~ 6717,4 TV fiuid friction ~ 2 C Pruia AV

For small objects at low speeds friction is dominated by the stickiness or “viscosity’ of the fluid,
represented here by the parameter 7;,,,. For large objects moving at high speeds friction is dominated by

the density of the fluid, represented here by the parameter p; . In both cases the size of the moving
object affects friction, as well as the speed of the object through the fluid.

Terminal velocity:

When the fall of an object under the pull of gravity is resisted by fluid friction it reaches terminal velocity.
The value of this depends on the objects mass and shape, as well as the properties of the fluid.

small-slow __ mg large-fast __ 2mg

V., = \Vahat = |—
terminal terminal
6727 " C Pruig A

! Gould, S., 1981, “Kingdoms without wheels”, Natural History, 90, (3), 42.
2 LaBarbera, M., 1983, “Why Wheels Won’t Go”, The American Naturalist, 121, (3), 395.
® Haldane, J.B.S., “On Being the Right Size and Other Essays”, Oxford University Press, 1985.
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6. Describing and quantifying motion in one dimension
1) Establishing a basic description
i. Position and intervals of distance
ii. Instants and intervals of time
iii. Motion: position vs. time histories
2) Details of the description: changing position
i. Changing position and rates of motion
ii. Velocity vs. time histories
iii. Finding displacement from velocity vs. time histories
3) Details of the description: changing velocity
i. Changing velocity and acceleration
ii. Acceleration vs. time histories
iii. Finding change in velocity from acceleration vs. time histories
iv. What if accelerations change? Jerk, shap, and beyond...
4) Relating these three descriptions of motion: position, velocity, and acceleration
i. Three trivial examples: constant position, constant velocity, and constant
acceleration
5) Motion as a model for all change, and the origins of calculus

Physics for the Life Sciences: Chapter 6

In this chapter we will take a bit of a pause. For a while now we have been examining forces and how
they play against one another in cases of equilibrium (either rest or uniform motion). Today we’ll begin to
discuss how motions change, and what happens when forces acting on objects are not balanced. To do
this, we must first refine our tools for describing motion.

If we know the full path of an object, its position at each instant of time, we know everything about how
it has moved. To understand this motion, we will need to speak of the velocity of the object, how rapidly
its position is changing, and its acceleration, how rapidly the velocity is changing. For starters, we’ll talk
just about motion in a straight line. Later we will see that motion in two and three dimensions is a rather
straightforward extension of one dimensional motion.

We begin with an example, just to get a sense of where we’re headed. Picture in your mind a sprinter
prepared to run the 100 m dash. Before the start she is still on the starting blocks. During this time her
position remains the same from instant to instant, her speed is zero, and since her speed is not changing
her acceleration is zero. Then the gun fires, she bursts forward from the blocks, accelerating quickly
toward her top speed. During this period, her position changes from instant to instant. Her speed changes
from instant to instant as well, becoming larger and larger. Since her speed is changing, she is
accelerating as well.

After just a few seconds, our sprinter is going full out, running at absolutely top speed. During this period,
her position continues to change from instant to instant, but her speed does not. Since her speed is not
changing her acceleration is now zero.
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After bursting through the finish tape, our sprinter cruises to a stop. During this period, her position
continues to increase, always moving farther from the starting blocks. Now her speed is gradually
decreasing, and this changing speed implies an acceleration.

Finally, she stops, hugging her coach in victory. Now her position remains the same from instant to
instant, her speed is zero, and since her speed does not change, her acceleration is zero as well. In this
chapter, we will develop in more detail the tools we need to describe this motion fully. We will speak of
position, velocity, and acceleration, each determined instant-by-instant along the path.

6.1 Position, and intervals of distance

The motion of real, extended objects is complex. You can see this by considering what we mean by a
cloud traveling at 10 mph, or a horse racing at 35 mph. When we talk informally about this our meaning
is clear (the cloud is ‘on average’ moving along at 10 mph), and to begin we will simplify complicated
motions in this way. We will begin by ignoring the internal structure of an object and treat it instead as a
"point object", asking only how this point moves. When we do this we can model a complicated motion
(like a horse racing down the track with its legs churning along and its rider bobbing up and down) in a
simple way. Once we have a basic model in hand, we can gradually add more and more realistic details.

To describe a motion we begin by setting up a reference frame, a standard scale against which to measure.

To describe motion we simply record the position of the object at every instant. We’ll use this kind of
labeling scheme.

s, = position at a particular instant t,
As,, =S, —s, =interval between the two instants t, and t,

Notice the notation, the symbol A (the Greek letter "delta™) is used to denote a change in a quantity. Think
carefully about what the variable S, measures. It really only denotes a location. We label this location,
this point in space, by noting its distance from the completely arbitrary origin of our coordinate system.
You should also think about what the signs of AS,; mean. When it is positive, the object has moved

farther to the right between instants t; and t,. When AS,, is negative, the object has moved to the left.

The signs of the positions and intervals can be confusing, and it may help you to think about what it
means to have both S; and S, be negative, while AS,, is still positive. You might also ponder whether

As,, =0 implies that no distance was traveled between instants t; and t,.
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Instants and Intervals of Time:

Time too must be measured. We measure time by comparison to something which happens regularly.
What do we compare to? Over the years, many steady timekeepers have been used. The oldest are
astronomical, including the rotation of the Earth and its orbit around the Sun. These allow us to mark off
days and keep track of the years. To measure shorter periods of time requires something which repeats
more often. For this purpose, many different tools have been used, including the pulse, water clocks,
masses on springs, pendula, and more recently the very regular, rapid oscillations of quartz crystals and
atoms.

In a manner very similar to the way we described positions and intervals of distance, we also talk about
instants and intervals of time:

t, = time of a particular instant when something happens (an 'event’)
t, = time of a second instant when something else happens
At,, =t, —t, =interval of time between two events

Like a position, an instant (t, or t,) is a location in time. It's really just a marker, without units. Only an
interval, the time between two instants, has units of seconds.

Motion: position vs. time histories

Since each position S; corresponds to a particular instant t;, we can represent the series of events which
makes up the motion of an object graphically. This is an example of a position-time graph for a motion:
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If the motion is smooth we can reliably fill in the history between these specified points with a continuous
curve describing the motion. This curve is a model for actual motion of the object. What does the above
picture describe? This object starts at the zero point. It remains there for a bit, not moving as time passes.
Then it begins to move to the right, speeding up for a while, and slows to a stop at a positive position of
about 100. Interpreting position time graphs properly can be very helpful. In class we will do quite a bit of
practicing. Now we want to extend our discussion of motion to include the idea of speed.
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6.2 Changing position and rate of motion

When we talk about rate of motion, we want to record how rapidly the position of an object is changing.
In everyday life, we would talk about the object’s speed. To make things somewhat more precise, we will
distinguish between speed and velocity. To fully describe the rate of motion of an object, we have to say
both how fast it is moving (its speed), and also what direction it is traveling in. This full description, a
vector quantity, is the velocity of the object. The speed is just the magnitude of this vector.

Velocity is a good example of something we talk about all the time without care. It clearly has something
to do with how fast you go, how much distance you travel in some short period of time, but what's a short
period of time? For a cross country trip, it might make sense to consider the entire length of the trip. If we
use this in determining velocity we will learn an average velocity. If, instead, we wish to know the
velocity at an instant, we must examine the distance traveled in an infinitesimally short period. This will
tell us the instantaneous velocity.

We use the notation for spatial intervals, or displacements, and time intervals to define these:

0 Auverage velocity: Uniform velocity required to travel distance As intime At

AS
Vaverage = A_t

Average velocity tells you nothing about variations in velocity which might have
happened during the interval At , but it can give you a good estimate of the object’s
motion throughout this period of time.

0 Instantaneous velocity: the velocity of the object at a particular instant. This can be
estimated by examining a time interval At which spans the instant {; at which you want

the velocity. To improve the estimate, you continually narrow the time window At until it
becomes and infinitesimally short dt .

1 AS round t dS
instantaneous (t| ) = Ilmmeo ﬁ = E

around t;

v

I

Instantaneous velocity tells you exactly the velocity at this moment, but tells you nothing
about velocity at other times.

The average velocity is easy to understand, it’s just distance traveled divided by time, but it fails to take
into account variations in velocity. In cases where there are no variations, its fine. The instantaneous
velocity is just the derivative of the position with respect to time, d%t . This idea of “instantaneous rate

of change” is the central idea of calculus. And of course it was invented by Newton and Leibnitz for just
this purpose, to properly describe the motion of objects.
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For simple cases, where the speed of the object is uniform and regular, we can use these relations to tell
us things about how the object moved. For instance:

1. I have 1 hour to travel 30 km. How fast, in meters per second, must | travel?

As =30 km * (1000 mj — 30,000 m
1km

At =1 hour * (60 m'”j * (60_5] — 3600s
1 hour 1 min
AS 30,000 m 8.3 m

v = = = 8.
MR AL 3600 s S
2. |l can jog at about 2.2 m/s, and | continue for 3 hours, how far do I get?

At =3 hours * (3600 Sj —~ 10,800 s
1 hour

AS
Vaverage = E SO

AS = VoAt = 22 2 *10,800s = 23,760 m = 23.8 km

average

How fast is fast? We will usually describe speeds in this class in units of meters per second. It is useful to
get a mental image of speed by comparing to more familiar units. Most of us are familiar with the mile-
per-hour scale for speed because we use cars all the time. By watching the speedometer and looking at
motion, you get some visceral sense of velocity. As a result, it is often helpful to note that:

1 %: 224 mph so 45 %zloo mph

Here are some example speeds, just to give you a sense of the range we might deal with:

Sea floor spreading: 1x10° m/s (~3cm/yr)

Grass growing: 2x10® m/s

Glacier: 3x10° m/s

Walking: 1.3 m/s

Car: 25 m/s

Sound in air: 330 m/s

Earth's motion around the sun: 2.9x10* m/s

Sun's motion around the Milky Way center: 2.2x10° m/s
Approximate speed of an electron orbiting in Hydrogen: 2x10° m/s
Speed of light in empty space: 2.998x10% m/s (~1ft/ns)

Speed-Time Graphs and finding them from position time graphs:

If there are variations in speed, then to accurately describe the motion we have to consider the
instantaneous speed. Using the instantaneous speed means we have a measure of the speed at each instant.

So now our description of motion includes both a position S, and a speed V, at each instant t;. This means
we should be able to make a speed time graph, just as we have a position time graph.
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What is the relation between the two? The instantaneous speed ds/dt also defines the slope of the

position-time curve, so to create a speed time graph from a position time graph, you have to examine the
slope of the position time graph at each point in time, and put that slope on the velocity time graph. The

figure below shows some simple examples of position time graphs (on the left) and their corresponding

speed time graphs (on the right).
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The slope of the position time graph determines the velocity time graph. In particular, any "linear"
position time graph corresponds to a constant velocity.
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Finding distance from velocity-time graphs:

Is there a way to reverse this? Given the velocity time graph, can | determine the position time graph? If |
know how fast you are going at each instant, | can determine how far you went in each little period of
time. Take the velocity in each second, multiply by 1 second to get how far you went, and add this to the
total.

What does this mean on the velocity-time graph?

'1 D T T T T T T T T T T T T T T T T T T

Velocity

Time

As | take the velocity in each period, and multiply by the time between samples, what | get is the area
under the velocity time curve. So the distance traveled is just the area under the velocity time curve. In
this case this area is:

— . * —
0—3seconds: 0.5 (6 '/“S)*ZS—G m
— . * —
3—7 seconds: 6 '/“S 4s5=24m
J— - —
7-10 seconds: 0.5*6 '/“S*Zs =6m

Total distance=6m+24m+6m=36m

This "area under the velocity time graph™ is just an expression of the integral of the velocity time curve:

10 10 dS (t)
Area = Ivinstantaneous (t)dt = I—dt
0 0 dt
So, we have a pair of relations:
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What if the speed is negative?
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In this case, the part with negative velocity means motion in the negative direction, so it adds in "negative
area" to the total:

0-2seconds: —10m/sx2s = —20m

2—4seconds: 0.5x-10m/sx2s = —10m

4-6seconds: 0.5x10m/sx2s = 10m

6—10 seconds: 10 m/s x 4s = 40m

Total distance = —20m + —10m + 10m + 40m = 20m

Negative area; what does that mean? Well it isn’t really negative area, it’s just distance traveled to the left
instead of to the right.

Now that we understand the relations between position and velocity formally, we can determine precisely
the velocity vs. time from a description of position vs. time. Imagine that we can describe the position as a
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function of time as some function S(t). We find the velocity vs. time by taking the derivative of this

function:

If s(t) =15+0.5t +0.1t* then

v(t) :ds_(t) =0.5+0.2t
dt

Working in the opposite direction:

If v(t)=0.5+0.2t how far does this travel fromt=0tot =42
4
0

s(t)= fv(t)dt = (0.5t +0.1t2)‘ =(0.5%4+0.1*4%)~(0.5%0+0.1%0%) =36 m
0

6.3 Changes in velocity and acceleration

We have talked about ways to relate the position, velocity, and time, for motion of objects. Earlier in the
course, Newton’s first law taught us that there is no real need to explain motion, but it is necessary to
explain changes in motion. To describe these changes in motion we will need to include a way to describe
changes in velocity.

We described the rate of change in position with time using velocity:

5 _ds
At—0 At dt

And we describe the rate of change in velocity with time as acceleration:

a=lim, , =Y - &
At—0 At dt

What are the dimensions of this? It's a change in velocity (which has units of distance/time) divided by a
time, so acceleration has dimensions of (distance/time) / time = distance / time?. In the usual units
acceleration is expressed in meters per second?.

Acceleration vs. time histories

We begin our consideration of one dimensional motion by thinking about a sprinter moving in a straight
line. For this discussion As > 0 means displacement to the right As < 0 means displacement to the left.

The sprinter begins at rest. She speeds up until she is moving at a constant speed, which she continues for
a while. Then after crossing the finish, she gradually slows down and stops. How do we describe her
motion? Think about this motion in terms of your car. You start on a straight road, speed up to some
speed, travel at a constant speed for a while, then slow to a stop. What does your speedometer read during
this time? What in your car measures the distance? Is there anything in your car which measures
acceleration?
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We now have a three-fold history of the motion of the object. Note that although the velocity here is
always positive, the acceleration is both positive and negative at different times. This is an essential point:
that although velocity is always along the direction of motion, acceleration can be in any direction.

Notice one more thing as well. In this example, the acceleration basically takes on three constant values;
one positive, one zero, and one negative. What is the acceleration in between these three values? In the
idealized model we have here, the acceleration changes from positive to zero, and from zero to negative,
instantly. But of course in a real, physical case this would not be the case. Instead, the transitions from
one constant value of acceleration to the next would be smooth and continuous, rather than infinitely
sudden and discontinuous.

Finding change in velocity from the acceleration vs. time history

Just as the change in position AS can be found from the area under the velocity vs. time history, the

change in speed AV can be found from the area under the acceleration vs. time history. When the
acceleration is positive, the velocity becomes more positive during each interval of time. When the
acceleration is negative, the velocity becomes more negative during each interval of time.

We don’t say that the speed increases when the acceleration is positive because this may not be true.
Imagine an object traveling very fast in the negative direction. A positive acceleration implies that this
velocity becomes more positive in each time interval, but since it begins large and negative, the speed
becomes smaller as time goes on. Once again, position always changes in the direction of the velocity,
and velocity always changes in the direction of acceleration.

What can we say about the relations between distance, velocity, and acceleration when the acceleration is
not a constant? There are essential general relations that always apply. What we always know is how the

position-time, velocity-time, and acceleration-time graphs are related to one another. There are four parts
to remember:

1. The velocity is the slope of the position-time graph
2. The acceleration is the slope of the velocity-time graph
3. The distance traveled is the area under the velocity-time graph
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4. The change in velocity is the area under the acceleration-time graph

These are true for every motion. Once you know any one of these three graphs, you can determine the
other two. They are all very closely related.

Changes in acceleration; jerk, snap, and beyond...

The relations among position, velocity, and acceleration form an obvious pattern:

s(t)
ds(t)
V=4

_ dv(t) d’s(t)

a(t) =

dt dt?

Why not continue this pattern? If velocity is the time rate of change of the position, and acceleration is the
time rate of change of velocity, what is the time rate of change of acceleration? And what is the time rate
of change of the time rate of change of the acceleration? We could talk about these things, and in fact they
have names. The time rate of change of the acceleration is called ‘jerk’, and the time rate of change of
jerk is called “snap’ or sometimes ‘jounce’...

: da(t) d?v(t) d’s(t

jerk (t) = di )_ dtg )_ dtg )

snap(t) = d(jerk(t)) _d®a(t) dv(t) d*s(t)
dt dt2 dt3 dt4

Obviously this could continue forever. Why do we usually stop with acceleration? We needn’t, but this
proves reasonable to do, mostly for two reasons.

First, to predict the full path of an object, we need to know how it is moving and how that motion
changes. We have seen that if we know the velocity at all times, we can predict the position, and that to
know the velocity at all times, we need only know the acceleration at all times. So if we actually know the
acceleration at all times, we can predict the full motion of objects. It’s true that the acceleration may
change with time (so that there would be jerk, and perhaps snap and beyond), but all we need to know to
predict the path is the acceleration.

Second, we have found that there is a profound connection between acceleration and the forces which
cause changes in motion. Remember Newton’s second law:

- dp
Fow = —
total dt

The momentum p = mvV , and since in most cases the mass of an object does not change,
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- d(mv) av
otal =5, —M——-=Ma
dt dt

Seen in this context, Newton’s second tells us that forces cause accelerations. If we know all the forces,
we can predict the accelerations, and as we have just argued, knowing the accelerations allows us to fully
predict the motions of objects.

So while jerk, snap, and even higher derivatives of the motion of an object exist, they aren’t the source of
change in the world. Forces cause the changes we see, and forces, most basically, create accelerations.
Once we know the accelerations, we can predict the motion of everything. So position, velocity, and
acceleration will be the focus of our study of motion.

6.4 Modeling some simple motions: constant position, constant velocity, and constant acceleration

Most motion is complex, but as usual we will begin by analyzing in detail some very simple cases. The
first, very common, is also very trivial; constant position. In this case:

Most of the things you see around you right now appear to be exhibiting this kind of motion. But are they
really? After all, the Earth spins on its axis once a day, and orbits the Sun once a year. Meanwhile the Sun
and the rest of the solar system orbit the center of the Milky Way about once every 230 million years. So
these things, and you, are not really at rest. They are moving, and their motions change with time, though
these changes happen rather slowly. Since the changes in motion associated with the spinning and orbital
motion of the Earth happen slowly, we can approximate them by motion with constant velocity. How
would we describe position, speed, and acceleration for constant velocity motion?

s(t)=s,+Vot  Vv(t)=v, a(t)=0

Notice that the constant position motion we considered first is really just a special case of constant
velocity motion; the one with v, = 0. While you sit in your room reading this, everything you see is

moving with a nearly constant velocity. You don’t notice this motion because you are moving in the same
way; the relative velocity between you and your surroundings is zero, and it’s this zero relative velocity
which remains unchanged with time.

Is motion with constant velocity a common thing? When something moves with constant velocity it just
keeps going, never staying near anything which is not moving along with it. There are many cases of
motion with constant velocity which last for a while. We have already seen a good example; terminal
velocity, in which one force pushing something forward is balanced by another force which resists the
motion. Motions of living things are often like this, at least for a while: people walking down the street,
birds flying through the air, swimming fish, all have periods in their motion during which a balance of
forces leads to constant velocity. So motion with a constant velocity will be a model we will use to
describe the motions of some objects for a while.
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The next simplest example we might consider is motion with constant acceleration. This is often
described in introductory physics courses as a common situation, though in fact it is not. What would
happen to something which experienced a constant acceleration? Pretty quickly, it’s going really fast, and
then of course it doesn’t stay around long. To have constant acceleration, the total force on an object must
be constant, somehow continuing to act on the object while it goes zooming off through space, moving
faster and faster. When you think about it this way, it’s apparent that this is not so easy to arrange. So in
fact, motion with constant acceleration is exceptionally rare.

Why talk about it then? There are two reasons really. First, it sometimes does happen for a little while, at
least approximately. So we can use the equations which describe motion with constant acceleration as a
model for more complex motions, at least during the short periods when the acceleration is approximately
constant. The second reason for talking about motion with constant acceleration is because this kind of
motion is easy to solve analytically. The latter is probably the main reason the example is so popular in
introductory physics courses.

Remember that we have already considered one special case of motion with constant acceleration: motion
in which the acceleration is zero, so the velocity never changes. Now we want to consider cases where the
acceleration is not zero, but still constant.

a—ﬂ—a
dt °

In this case, with constant acceleration, there is no difference between average acceleration and
instantaneous acceleration. We can write:

dv  Av
a,=—=— S0 Av=a,At
°dt At %
or:

Av=v, -v,=aAt or V=V, +aAt

In this simple case we can determine how the velocity of an object changes completely. Taking a sample
case in which the initial velocity is 5 m/s, and the acceleration is 3m/s?. What is the velocity after 10
seconds?

Vi =V, +a,At =5 r%+3 f%leos:BS r%

We might instead ask: if a car can accelerate at 5 m/s?, how long does it take it to accelerate from a stop to
35 m/s?

V.—y. 3B M/ _om
Vi =V, +a,At  or At=—"— 1= fry 4:73
a‘0 2
S
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So now we know how the velocity changes. What about distance traveled? If | start a some velocityV;,
and accelerate at a constant rate to some velocity v, for some total period of time At , I can draw the

velocity-time curve for this as:

Vs

V.

Now remember that because for each little period dt, the distance traveled is ds = V(t) dt, the total

distance traveled is equal to the area under the velocity-time curve. This area can be determined by
breaking the above into two parts: a lower rectangle which has area:

area = v,At

and an upper triangle which has an area:
1
area =—(v,; —v, JAt
2( f ')
So the total distance traveled is :
1
As = VAL + E(vf — V) At = VAL + v, At

This should not be too surprising. The first term in this equation is just the distance the object would have
traveled if the velocity were not changing. The second term represents the additional distance traveled
because the velocity is increasing.

It is often useful to rearrange these relations, expressing them in different ways. The relation we just
wrote is very useful if you know the initial and final velocities, and you want to know how far you have
traveled. If instead you know your initial velocity and your acceleration, and you want to know how far
you go, it is more useful to restate the above relation in terms of acceleration:

a=M or (v, -v,)=aAt

At
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this lets us replace this part of the above relation to find:
1 2
As = V,At +Ea(At)
Remembering that AS = S; —§; , we can write this in a commonly used and explicit form:
1 2
S, =S, +V,At +Ea(At)

Equations for constant acceleration motion derived using calculus
Let's determine these relations more directly, using some simple calculus

_dv

a=—
dt

so that
dv=adt or jdv:jadt = ajdt

We were able to take the acceleration out of the integral because we have assumed it is constant. This
form is easily solved to find:

v =a(t, -t)+C

where C is a constant of integration, something undetermined by the mathematics. In physics, such
constants must always be determined by the physical circumstances, by the "boundary conditions" of the

problem. In this case, we have to know what the velocity was at time t =t; . If this is written V; then we

know that:
v,=a(t-t)+C
so:
C=yv,
And we write:

In a similar way we write:

ds
v=— or ds=vdt
dt
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So
ds=s=|vdt=|(at+v, dtzia t, —t, 2+vi t, -t )+C

where C is a new constant of integration. Just as above, we can determine this by applying the boundary
condition that s = s; when t; = t;, we have:

1 2
s =5, +V(t, —ti)JrEa(tf ~t;)
Now we have two kinematic equations to work with in situations where the acceleration is constant:

v, =v,+a(t, —t;)
1 2
s =5, +Vi(t, —ti)+5a(tf ~t;)

It is possible to combine these two to eliminate (tf —ti) and set up a third kinematic equation. The

derivation of this third equation is straightforward:

(t,-t) (v ~v)

a
2
() =u ) 2o
Or
2a(s, —5;)=(v, —v,)[ZvI +(vy -V, )]:(vf =V )(vy +v) =V -
to finally give:

For convenience, it may be useful to lay out all three of these ‘kinematic equations’ for motion under the
influence of constant acceleration together:

v, =v,+a(t, -t

S, =S +V. (tf —ti)Jr%a(tf ~t )2

Vi -V} =2a(s, -s)
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A caution

Very often in physics we follow a line of reasoning which begins with some simple assumptions and
continue with it so far that we forget the assumptions we started with. What have we assumed about the
acceleration to derive this set of equations? We have assumed that the acceleration is constant throughout!

These equations do not apply at all if the acceleration is not a constant. Why do we talk about the constant
acceleration case? Mostly because it is easy to analytically solve, but also because it does sometimes
happen, at least for a while. As a result, these equations can provide a useful element in a model meant to
describe something more complex. The equations of motion for constant acceleration are another of our
“spherical cow approximations”.
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A Quick Summary of Some Important Relations

Completely general relations between position, velocity, and acceleration:

s(t) As = [v(t)dt

vty =2 \
t Av = |a(t)dt

o dv() _d*s(o)

()= dt  dt? a(t)

Put into words; the velocity at each instant is the slope of the position-time graph, and the acceleration at
each instant is the slope of the velocity-time graph. The change in position during from an initial time t,

to a final time t; is the area under the velocity-time graph between those two times. Likewise, the change

in velocity during this time interval is the area under the acceleration-time graph between those two times.

Specific relations which predict position and speed when acceleration is constant:

v =V, +a(t, —t) V, =V, +aAt
L i _ s, + VAt - aAt?
s =5+ (t, —ti)+5a(tf -t) 5 =S twAt+-a
2 2
vi v} =2a(s, -s) vZ—vZ =2aAs

Here you see the same relations written in two different forms. In the first the initial position, time, and
velocity are explicitly listed. In the second the change in time between t, and {; is written with the

shorthand At , and the change in position is written with the shorthand As . You can of course use either
form; just be sure you know that these apply only when acceleration is constant!

Physics 135 Winter 2011 143
Copyright Timothy McKay



7. Getting started and moving around: what makes motion change
1) Quantifying a motion and its changes
i. Force and the alteration of motion
ii. Mass and momentum
iii. Momentum is relative, but changes in momentum are absolute
2) Force and the rate of change of momentum
i. Duration of force and impulse
ii. A simple example, the bouncing ball
iii. Force and acceleration
3) Weight and free fall
i. The idealized case with no other forces
ii. When is this idealization appropriate?
iii. Falling through air: speeding up to terminal velocity
4) Summing up one dimensional motion: getting started, traveling along, and stopping

Physics for the Life Sciences: Chapter #7
7.1 Force and the alteration of motion:

In the last lecture we learned how to describe motion with position time graphs, rate of motion with
speed-time graphs, and changes in rate of motion with acceleration-time graphs. Now that we have the
tools in place to describe motion we’re going to learn about what causes motion to change, and how
rapidly that change occurs.

Recall what Newton said, an object in motion remains in motion "unless compelled to change its motion
by forces impressed upon it". The law of inertia tells us that every unmolested object remains in uniform
motion. But right here Newton is telling us how motion changes; motion changes from uniform because
of unbalanced forces.

Mass and momentum:

OK, forces alter motion. How do they do this quantitatively? We know from experience that the way in
which a force acts on an object depends on its nature; it is easier to stop a running 2 year old than a hard
charging 300 Ib lineman. The proper way to express this inertia of motion, the ease or difficulty with
which something is stopped, is through momentum, defined as:

p=mv
This is the mass of an object times its velocity. There are several things to notice about momentum:

e Momentum is a vector, so you need to be aware of both its magnitude and its direction.
Changes in momentum will be vector changes. They can be changes in magnitude, or
direction, or both.

e Momentum depends linearly on the mass of the object. Double the mass of a moving object
and you double its momentum. Reduce the mass to a 10" of its original value and you reduce
the momentum by a factor of ten.

o Momentum depends linearly on the magnitude of the velocity; double the velocity of an
object and you double its momentum.
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e The direction of momentum is always in the direction of the velocity (and hence always along
the path of the object’s motion).

This measure of how difficult it is to change the motion of an object is quantified in Newton's second law:

The force exerted on a body equals the resulting change in its momentum divided by the
time elapsed in the process.

Expressed as an equation, this amounts to a quantitative definition of the force vector:

. do
I:total = d_?

The total force on an object is equal to the change in its momentum divided by the time it takes to make
that change. The dimensions of force are [M(L/T)}J/T = ML/T? or in the usual units kgm/s® This unit, 1
kgm/s?, is called a Newton for the obvious reason. How large is 1 N of force? It's about equal to the
weight of a modest sized apple, like the one which fell on Newton’s head in the (probably apocryphal)
story.

What is a force really, what is its essential nature? A force is a fundamental thing, the most basic
description of an interaction between two objects. Because it is so fundamental, we can’t really describe
what it is in terms of other things. Our best way to describe forces is to talk about what they do. In fact the
study of forces and how they behave is a very large fraction of physics, and in the end, they are what they
do. What do I mean? We can tell there is a force present only by seeing it act on an object. This is
illustrated in the figure below. When we see the momentum of an object change, we know that a force has
acted. In a real sense the change in momentum and the force are the same thing; they are equal.

p. S -
! T \ Where the

force acts

We don't have to know in any detail what happens in the oval to describe the force; we only have to know
how the momentum of the object changes. When we see the momentum change, we know a force acted.

Relativity and momentum:

There is an important point to note here. Because momentum depends on velocity, its value is not
absolute; it will be different for different observers. An example should help to illuminate this. Imagine a
thoughtless motorist, speeding down a country road at 45 miles per hour. He holds a can of Dr. Pepper,
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takes the last swig, then gently flips the empty can out the open window. A peaceful pedestrian, minding
his own business, is promptly struck in the forehead by a can traveling at 45 mph.

To the driver, the can moves slowly, and has a small momentum directed straight out the car window. To
the poor pedestrian walking beside the road, the can is moving very fast, and has a large momentum,
mostly in the direction of motion of the car. Which observer is right? How might the can have both large
and small momentum?

In fact both observers are correct, because the absolute value of an object’s momentum has no meaning
for physics. What physics cares about, as Newton’s second law tells us, are changes in momentum.
There’s no problem with two observers seeing the can moving in different ways. What they must agree on
is what happens when forces act; they must agree about how the momentum of the can changes. What do
the two observers see when the can strikes the innocent forehead of our pedestrian?

The driver sees the can begin with a small momentum to the side, then suddenly acquire a large
momentum in the backward direction. The momentum changes a lot. This change is given by:

Ap:pf_pi

So the driver sees a small initial momentum and a large negative final momentum. So the momentum
change is large and in the direction opposite the car’s motion. The pedestrian sees the can come toward
him with a large positive initial momentum. Then it strikes his forehead and comes to a stop, with a
nearly zero final momentum. So the pedestrian also sees a change in momentum which is large and in the
direction opposite the car’s motion.

The value of the momentum of an object is relative; it can truly be different when seen by different
observers. Changes in momentum, however, are absolute, and will be seen as the same by all observers.
Note that this is related to the law of inertia; objects in motion continue in motion; the only relevant thing
is changes in motion, not the absolute amount of motion something has. It is change that is important in
physics.

There are times when two observers see different changes in momentum, but this happens only when one
or both of the observers are themselves changing their motion. Imagine, for example, that you place your
coffee cup on the dashboard of a car which suddenly accelerates forward (carrying you with it). It will
seem to you that the cup is thrown backward in the car; that its momentum suddenly increases in a
negative direction. An observer standing on the sidewalk sees things differently. She sees the cup remain
in place, while you and the car suddenly accelerate forward. You and the person on the sidewalk disagree
about how the momentum of the cup changed, but this can only occur if one (or both) of the observers are
themselves changing their motion.

When observers travel at constant velocity, when their motions do not change, they will all observe the
same changes in momentum for all objects. They will agree on what forces act, and be able to explain
them in coherent ways. These observers are called ‘inertial’ observers. If one or both of the observers is
changing their motion, they may not agree on the changes in momentum they see. These observers would
think that different forces were acting, and could not really agree about what is happening. Such observers
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are called ‘non-inertial’. In general, we will analyze what happens from the perspective of inertial
observers. But we should always remember that our own motions are ever changing; the Earth rotates
every day, and orbits the sun every year. So although we are nearly inertial observers, in detail we are not.

7.2 Duration of force and impulse:

There is an alternate way of looking at Newton’s second law which is quite instructive. If we rearrange
this equation as:

FAt = Ap

we can explicitly see that to obtain a certain change in momentum we can either use a large force for a
short time, or a small force for a long time. The product of force times time is what creates momentum
change. This product is called “impulse”, and in some ways its action is easier to understand than force.

We can turn this around productively. If we see a certain momentum change, we know how large the
impulse was. Then, if we know about how long the interaction was happening, we can estimate the
average size of the force.

Here’s a simple example. | run to the East at 2.5 m/s. Then, rather quickly, in a half second or so, | stop,
turn around, and run back to the West at 2.5 m/s. About how large is the force which must act on me to
alter my motion in this way? Newton’s second law gives us what we need to find out. How does my
momentum change?

Aﬁ:pf_pi

My initial velocity is 2.5 m/s East. Let’s call East the positive direction, and West negative. My mass is
about 80 kg. So my initial momentum is:

P, =80 kgx 2.5 m/s = 200 kgm/s E
The final momentum has the same magnitude, but is in the opposite direction:
P, =80 kgx—2.5 m/s =—200 kgm/s E
Putting these together, we get
AP = P, — P, =—200 kgm/s E —200 kgm/s E =400 kgm/s E
In this answer, the minus sign simply means in the negative, or West, direction. Now we get the force:

£ _ AP _ 400 kgm/s E

=800 kgm/s®* E =-800 N E
At 05s

Physics 135 Winter 2011 147
Copyright Timothy McKay



This just means 800 N in the West direction. It’s not surprising that to change my motion from going East
to going West requires a force in the West direction. This is a pretty large force too. Remembering that 1
N is about the weight of an apple, this is the weight of 800 apples. It’s also about equal to my weight,
which is 80 kg x 9.8 m/s® = 784 N.

If I’m going to run forward at 2.5 m/s (6.25 mph, a modest jog) and turn
around in half a second, there has to be a force equal to my weight acting in
the opposite direction for about a half a second. Where does this force
come from? | push my feet against the ground, and the ground pushes back
on me. It’s the force of the ground pushing on me that turns me around and
sends me back the other way. Of course that frictional force only appears
because | push on the ground.

Force and acceleration:

This view that force is coupled to changes in momentum is the fundamental way of stating Newtonian
mechanics, and it is the most correct. But there is another, often useful, way of looking at force.

M) _ 1097 _ g
ot

lE:

Q_|O-
~ |oi

Now to derive this we have had to assert that the mass doesn't change with time, so that
d (m\7) =md (\7) . Is this true? For a very long time, everyone thought so, until early in this century when

the theory of relativity, and more important its experimental confirmation, demonstrated that it was not.
When objects approach the speed of light, the only correct formulation is

ol

F-

Q_|D-
~—

And it is impossible to say that the mass does not change. We should make it completely clear that

F =ma is perfectly acceptable for everything we will do in this book, but it is important for you to
understand why it is that we emphasize the time-rate-of-change of momentum form. This conception of
the second law, which was Newton's original conception, is now known to be the only correct one for all
speeds.

We will work a lot from now on with the more approximate F = ma formulation. It’s important, because
it allows us to determine forces from observed accelerations, and accelerations from known forces. Doing
analyses like this will be the subject of the next several sections of the text.

7.3 Weight: the force exerted by gravity

This alternate version of Newton’s second law (F = ma) lets us see weight in a new light. In Chapter 3
we showed that the usual way of describing the downward pull of the Earth on objects near its surface
actually stems from a more general theory of gravitational interaction which also governs the motion of
planets.
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In this equation, the constant ‘g’ is determined from the gravitational strength constant G, the mass of the
Earth, and the radius of the Earth. It has a value of 9.8 m/s°.

Notice that g has the units of acceleration. If weight is the only force acting on an object, it will accelerate
toward the center of the Earth at a rate of 9.8 m/s?. Of course if other forces also act, the acceleration may
be different from this. And in fact it is very rare that no other forces act. You, for example, sit in your
chair. Your weight pulls you down, and in the absence of other forces, you would accelerate downward at
9.8 m/s?. But of course other forces balance this downward force, and you remain in place.

Imagine you drop an object through the air. At the first instant, the moment you release it, the only force
acting on it is its weight, and indeed at this moment it accelerates downward with an acceleration of 9.8
m/s. As soon as it begins to move, however, its downward motion is resisted by an upward frictional
force. Once this begins, the total force on the object becomes less and less, its acceleration becomes
smaller and smaller, until eventually it no longer accelerates and falls from then on with a constant,
terminal velocity.

Falling objects and idealized free fall:

The fact that falling objects experience friction which resists their motion created confusion about the
nature of weight and falling objects for thousands of years. The question of why things fall when dropped
is as old as our ability to form it. It touches on our most basic understanding of how the universe works.

In ancient Greece, it was thought that everything was made of four elements: earth, air, fire, and water.
These elements had distinctive properties. Earth and water were both imbued with gravity, while air and
fire were possessed of levity. Most ancient Greeks believed that heavy objects (made of earth or water)
fell downward simply because it was in their nature to do so. This falling motion was intrinsic to the
object. Likewise fire and air might rise simply because it was in their nature to do so.

Our view today is very different. Newtonian theory suggests that an object falls because of an interaction
between it and the Earth. All of Newtonian theory relies on this idea of interaction. Nothing ever happens
on its own; everything is the result of some kind of interaction between things. Instead of the object
falling on its own, it falls because the Earth makes it fall. It is not surprising that the ancients didn’t speak
of this interaction. After all, gravity is a non-contact force. You can’t see any interaction taking place
between the Earth and a ball you drop.

Another ancient view was the Aristotelian idea that objects fall with constant speeds proportional to their
weights. This was not a crazy idea. In the presence of air friction it is true that many dropped objects
quickly reach a "terminal™ velocity which depends on their weight and shape. We see this as the result of
another force (friction) acting in addition to weight, but again, this is not so obvious, especially for objects
moving through the air.
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Galileo was responsible for successful public refutation of the idea that heavier objects fall faster. His
methods of showing this form a model for how we argue all points in science. He brought several
important techniques to bear:

1. ldealization: Galileo could see that friction was confusing the problem, and studied ways to
remove it. He could not remove air friction (vacuum pumps were not invented until just after
he died), but he could reduce it by using smooth, heavy balls, and restricting their motion to
relatively low velocities. The notion of focusing on simple, idealized, examples has proven
powerfully useful in physics.

2. Experiment: Experiments are the ultimate arbiters of truth in science. It might seem a simple
matter to test the Aristotelian model directly. But making measurements in the 17" century
was very different from today. To appreciate this, you might ask how Galileo measured time.
He had no quartz watches or atomic clocks. Instead he had to use pendulum clocks or design
water clocks which would drip at regular rates. They weren’t very precise, and this made it
very difficult for him to measure the time it takes to drop a ball. To avoid this problem he had
to devise ways to "dilute” the acceleration due to gravity. For this purpose, he replaced
dropping a ball with rolling it down a very smooth, gradually sloping ramp. This slower
motion gave him the ability to measure more precisely, and also reduced the influence of air
friction on his results.

3. Thought experiments: Sometimes a real experiment is difficult to conduct, but one can
imagine what it might be like. This is sometimes called doing a ‘thought experiment’,
something which many leading scientists become very good at. Galileo was particularly
brilliant in this way. In the Aristotelian model a heavy rock would fall faster than a light one.
Galileo imagined tying the small, slowly falling stone to the heavy, rapidly falling one. On
one hand, you might expect the smaller, slowly falling stone to slow down the heavy, rapidly
falling one. On the other, you might expect the combination, which is larger than either of the
two, to fall faster still. Both predictions seemed reasonable, and their disagreement was
enough to convince Galileo that the Aristotelian principle must be wrong.

Once Galileo removed the effects of friction (in fact and in his mind), he found that all objects,
independent of their mass, accelerated downward at the same rate. Gravity creates in any unsupported
object an acceleration which is independent of its properties. This is an extraordinary fact, almost bizarre.
How can it be that all objects, independent of their properties, behave the same way? This is
egalitarianism indeed. It was a clue that the size of the downward force exerted on an object by the Earth
depended on its mass. This meant that a small object would receive a small force, while a large object
would receive a large force; each would get just enough to make it accelerate downward at precisely the
same rate.

Free fall and motion under constant acceleration:

Galileo's basic observation was that in the absence of air friction all objects, independent of their
properties, are accelerated towards the center of the Earth at the same rate. The magnitude of this
acceleration is 9.8m/s?, and it is directed towards the center of the Earth. While this is never precisely true
here on Earth, we can use this as a simple, first approximation model to discuss the motion of a body
moving straight up or down quantitatively.
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A simple example of this motion is when you toss a ball straight up into the air. This motion begins with
some positive speed which is continually, regularly, reduced by the constant negative acceleration of
gravity, until at the top of the path, the speed becomes zero. Then as it descends it has a continually,
regularly, increasing negative speed. All the while the acceleration has a constant value of 9.8 m/s?
downwards. Position-time, speed-time, and acceleration-time graphs for motion like this are shown
below. In this case, the initial upward velocity is 5 m/s.
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This ball, moving in the absence of any air friction, would rise about 1.3 m above your hand, then fall
back down, all during a period of about one second. During this time, the speed of the ball would start at
+5 m/s, fall to zero, then increase to a negative speed of -5 m/s. Throughout the whole motion the
acceleration of the ball would be a constant -9.8 m/s?, the acceleration due to gravity.

It is sometimes difficult to believe that there is still acceleration at the moment when the ball comes to a
stop at the top of its path. It's perhaps worthwhile to consider the following thought experiment. Imagine
you are driving your car up a hill and you slip it into neutral, coasting upward. You gradually slow to a
stop. What happens if, at just the instant when your car stops, you abruptly put on the brake? What if,
instead, you are coasting on a flat road and put on the brake at just the moment at which you stop? The
fact that you experience a "jerk" when coasting up a hill is evidence that by putting on the brake you
actually change your acceleration (from a constant negative value to zero) at that instant.

In the last chapter we discussed general motion under constant acceleration and developed a set of
equations to describe it:

V; =V, +aAt
1 a2
S; =S, +V,At +EaAt
v —v’ =2a(s, -5
To use these equations here, we need only remember that if we define the upward direction as positive,

the acceleration due to gravity will be negative. What follows are several example questions we could
answer using this no-friction model for the motion of a falling object.
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1.

If 1 drop a ball from rest from a height y=10m, how long does it take to strike the ground at height
Om?

S, =S, +V,At +1aAt?

0m =10 m+%(-9.8 m/s*)At’

At= [TROMX2 _ 50as — 4143
—98m/s

It strikes the ground with speed:
Vi =V, +aAt

v, =0+(-9.8 m/s*)1.43 s =—14 m/s

If, instead, | throw the ball downward with an initial speed of 10m/s, how long does it take to
reach the ground?

S; =S, +V,At +1aAt?
0m =10 m +(-10 m/s) At +%(-9.8 m/s® ) At*
(4.9 m/s®) At* +(10 m/s) At +10 m =0 m

Notice that this is a quadratic equation with the familiar form:

ax’+bx+c=0

which has solutions given by:

—b++/b?—4ac

2a

X=

which in this case are:

~(10 m/s)i\/(lo m/s)’ —4(4.9 m/sz)(lo m)
2(4.9 mis?)
At=0.73s or —-2.8s

At =

The solution we seek is the positive one, the one with At = 0.73s. At this moment the object has
speed:

V, =V, +aAt =(~10 m/s) +(-9.8 m/s”)(0.73 5) =—-17.2 m/s
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Two points are important to make here. First, if you are uncomfortable with solving quadratic equations
in this way, | again encourage you to review this math. You'll have to be able to do this over the coming
months. Second, this equation, like every quadratic equation, has two different roots. In this case one is
negative and one positive. The physical meaning of this is as follows:

o We asked the question: "If the motion of this object is governed only by the uniform
acceleration of gravity, and if we know it passed a point y = 10m, traveling downward at 10
m/s at time t = 0, at what time did it pass the point y = Om?"

e The answer we seek is the one which occurs after the ball is thrown

But it is perfectly possible for the object to have passed this point at an earlier time, while all the time
executing motion described completely accurately by these equations. How does this happen?

These same conditions could be created by launching the ball from the ground (y = Om) at a time equal to
t =-2.8s, with a speed equal to an opposite the speed we have calculated it will hit with. So if we launch
a ball upward, with speed 17.2 m/s at time t = -2.8 s, it will pass the pointy = 10m at time t = 0, traveling
down at -10 m/s, and strike the ground at time t = 0.73s, traveling down at -17.2m/s.

Notice that even in the first problem, in which I just dropped a ball from 10m up, there were really two
solutions: we found that At = 2.0 = +/- 1.4. We ignored the negative solution at that point, but it is
mathematically allowed. In this case it just indicates that we could have thrown the ball up with a speed of
14 m/s at time t = -1.4. In either case we will have the motion from t =0 to t = 1.4 be the same.

This emphasizes a basic symmetry in the motion of objects moving under constant acceleration. When |
throw a ball up and down, there are two equal and opposite parts of the motion; a continual slowing as the
ball rises, and a continual speeding up as it falls. So when | launch a ball in the air with speed +10 m/s, |
know that it will return to the ground with speed -10 m/s. Once we have an understanding of this, we can
use it to look at all problems involving constant acceleration.

3. If I launch a ball upward with speed 25 m/s, how long will it take it to come back down? What's
the “easy” way to approach a problem like this? In the absence of air resistance, | know that it
will reach the ground with a “final” speed of exactly -25 m/s, so | could use:

V; =V, +aAt
(—25 m/s) = (25 m/s)+(—9.8 m/sz)At
t = Lmls —-51s
—9.8 m/s?

How else could we figure this out?

o Use the fact that at the top of its flight v=0, and that this must be half-way through its entire flight
o Use the equation As = viAt + 1/2aAt?, with As=0

Any of these methods would be correct. Often the key in physics is selecting the correct approach which
admits easiest analysis of the problem. Very often the simplifying point involves taking advantage of
some kind of symmetry in the problem.
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Before we leave this topic, we should think carefully about what we’ve just done. We asked questions
about the real motions of objects (balls thrown up and down) and analyzed what they would do if they
moved without air friction. We did this because calculating the details of the motion is simple in this
idealized model. But of course this model is not a perfect representation of reality. Much of the time it is
not even a reasonable representation of reality. Any time we apply this approach to a case where the
effects of air friction are not small, we know for sure that this model will give us answers which are very
imprecise.

Imagine, for example, that the object we drop in case 1 above is a feather. Will this feather fall ten meters
in 1.4 seconds? Will it strike the ground traveling at 14 m/s? Of course not! This is a fine example of a
case where the ‘no-friction” model is a terrible one; we should know we will go very far wrong if we use
it. When will this no-friction model be reasonable? Any time the frictional forces which accompany the
motion remain small in size compared to the weight of the object. Typically this will happen when an
object is very massive (so that its weight is large) and moving relatively slowly (so that the frictional
forces resisting its motion are small). Both things matter. For an object of low mass, like a feather, even a
very slow motion can create friction which is large compared to its weight. For an object of large mass, a
high enough velocity will always make the friction large compared to the weight. But so long as the
object is reasonable massive and moving reasonably slowly, we can use the no-friction model and expect
a reasonably accurate answer.

Another force calculation example

Let’s put this no-friction falling model together with Newton’s second law to create a quantitative model
for a bouncing ball. Imagine that a 0.2 kg rubber ball is dropped from a 2 m height. When it reaches the

ground, it reverses its direction, bouncing off the ground and traveling back up to about where it started.
How could we estimate the force exerted on it by the floor?

First, what is the momentum change? When it reaches the floor it has been accelerated by gravity through
2m of distance. The final velocity it has can be estimated from one of our equations for object moving
under constant acceleration:

Vi —v; =2a(s, —-s;) or vi=2(-9.8m/s*)(0 m—-2m)=39.2 m?/s*

v, =—6.3m/s

After it hits the floor it will bounce back off with just about the same velocity it came in with. This is
what enables the rubber ball to bounce back up to almost the same height it was released from. We know
that the force exerted on the ball changed its momentum from downward and larger to upward and large.
How did its momentum change during the collision with the ground?

Ap=(0.2 kg)(6.3m/s)§—(0.2 kg)(—6.3 m/s)§y =(2.6 kgm/s)§

Notice that throughout we have to keep careful track of the fact that this is a vector!

OK, we have the momentum change. That's equal to the impulse, so:
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FAt=(2.6 kgm/s)y

What direction is the force in? It must be up, because that's the direction of the impulse. Is this surprising?
Not really, because in order to make the ball change direction from moving down to moving up, the floor
will have to push upward.

How large is the force? To estimate this we have to estimate the amount of time during which the force
acts. Is it 1s? Is it 1/1000 of a second? It's probably somewhere in between, say 1/20 of a second. So, we
would estimate that the force is about:

E_OP_ (2.6 kgm/s) §

— =(52 kgm/s?) §
At (0.055) (52 kgmis*)§

So this force is about equal to the weight of 50 medium sized apples, a pretty sizeable impact.

What if we made the impact shorter, by making the ball harder for example? If we made the impact
shorter, the force required to reverse the momentum of the ball would become correspondingly larger.
What if we made it longer, by bouncing it off a trampoline for instance? In this case, the force required to
reverse the motion of the ball could be much smaller. Such a small force can still achieve the same total
change in momentum so long as it is able to act over a longer period of time.

This is how airbags, cushioned tennis shoes, and shoulder pads work. By allowing the momentum change
to take place over a longer time, these devices enable smaller, less harmful forces to produce the same
changes in momentum which would otherwise require quite large forces.

7.4 Not so free fall: small things falling slowly through the air

As we have seen, using the no-friction model for a falling object is likely to lead to errors. So let’s try to
improve this model, and analyze what would happen to an object dropped from rest which was subject to
air friction. Recall that we have already introduced (in Chapter 5) models for the frictional force
experienced by an object moving through a fluid; two different models in fact, one appropriate for small
things moving slowly and the other for large things moving rapidly. We also already know what the end
result of this motion will be; falling at a constant ‘terminal’ velocity. But what happens in between? How
does the position and velocity change?

Let’s first work out what the motion would be if the falling object were small, so that even when it began
to fall it would never travel very fast. In this case, we might expect the small-slow friction to always
apply. What does Newton’s second law tell us about this motion?

F

otal = F +W =ma

friction

In this case, all the motion is in the y direction, so we can drop the vector notation, and taking the upward
direction to be positive, write:

—b6znrv, —mg =ma,
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Notice that the weight is negative here because it acts downward. The frictional force has a minus sign in
front of it because it always opposes the motion, it always acts opposite the direction of motion v. So if
the object is moving upward, with v positive, the frictional force acts down. If the object is moving
downward, with v negative, the frictional force acts upward. Recognizing that acceleration is the time rate
of change of the velocity, this can be rewritten:

dv
m[d—t”j +67znrv, +mg =0

If we could find any function v, (t) which is a solution to this equation, it would be our prediction for

the motion of this small, slow falling object. This equation is a first order linear differential equation. The
solution to this equation would take the form:

v, (t)=v, (1-e*)

Does this work as a solution to this equation? To find out, we first calculate the derivative of this function
v(t) , and insert both into the equation above and see what it tells us:

dv, (t
a, (t):—ét( )zﬂvfe‘”

mAv,e " +6nrv, (1-e ™ )+ mg =0

Examining this equation, we see that it can be true if A and Vv, take on the values

/1=67z77r
m

V, =— mg
67znr

Putting these into the equation makes the total prediction for the velocity of the object as a function of

time:
_bmyr
Vy(t)Z— mg (1—6 m t]
67znr

So a small-slow object will start out at rest with an initial acceleration a, (0) = (. It will then gradually
speed up, with an acceleration which falls toward zero and a velocity which increases in magnitude
toward V, . After a while, it will fall at a constant terminal velocity determined by the balance between

the weight of the object and the frictional force which resists its motion through the fluid. This much we
had already determined back in Chapter 5. The details of this kind of motion are shown in the position-
time, speed-time, and acceleration-time plots below.
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Let’s recall what we’ve done. We specified a case where two forces act, the downward force of gravity
and an upward force of small-slow fluid friction. We then wrote down Newton’s second law for this case.
At this point, the physics of the problem was done; this is all physics has to tell us about the problem.

Identifying a function V(t) which would describe this motion is a mathematical problem. In this case we
were able to identify an analytic form for the solution, something which is often not possible. As a last
step, we inserted our proposed V(t) into Newton’s second law to determine the precise parameters in the

general form we proposed.

In most realistic cases, finding an analytic solution for the equations of motion as expressed in Newton’s
second law is impossible. We will see an example in a moment. This does not mean that we cannot
predict the motion of such an object. It just means that we can’t write down the predicted motion in a
simple equation, as an analytic function.

Remember, we are working here on small things which as a result fall slowly through the air. If the
objects were large, they would have terminal velocities too large for this small-slow form of friction to be
appropriate. How small is small here? For objects falling through the air, this analysis is most appropriate
for things which are very small indeed: smaller than 1 millimeter; single celled ciliates, pollen grains, tiny
water droplets which make up mist, dust grains, fungal spores, and viruses. For these tiny objects,
terminal velocities are very small, much smaller than the typical flows of air we associate with breezes
and temperature gradients in the air. As a result, such objects may never settle out of the air, but instead
be carried aloft by large scale flows of air just as they try to fall out.

Not so free fall: large t