

Government of Karnataka

Curriculum Framework for Undergraduate Programme in Colleges and Universities of Karnataka State

5th and 6th Semester Model Syllabus for B.Sc. in MICROBIOLOGY

Submitted to

VICE CHAIRMAN KARNATAKA STATE HIGHER EDUCATION COUNCIL 30, PRASANNA KUMAR BLOCK, BENGALURU CITY UNIVERSITY CAMPUS BENGALURU, KARNATAKA – 560 009

Model Curriculum

Program Name	BSc in MICROBIOLOGY			Semester	V
Course Title	MOLECULA				
Course Code:	МІС С9-Т			No. of Credits	04
Contact hours	60 Hours(4 Hours per week)			Duration of SEA/Exam	2 hours
Formative Assessment Marks 40		Sum	mative Assessment Marks	60	

Course Pre-requisite(s) :

Course Outcomes (COs): After the successful completion of the course, the student will be able to:

- CO1. Understand concepts involved in replication, transcription, translation, regulation of gene expression in bacteria and Eukaryotes.
- CO2. Differentiate the process of replication, transcription, translation, regulation of gene expression in bacteria and Eukaryotes.
- CO3. Understand the genetic switch in bacteriophages.
- CO4. Compare and contrast housekeeping, constitutive, inducible and repressible genes
- CO5. Outline regulatory mechanisms in bacteria to control cellular processes

Contents

<u>UNIT 1</u>: DNA Replication and Prokaryotic transcription.

- DNA Replication : Bacterial Cell cycle. Replicon. OriC. Bidirectional replication. Steps in Initiation of replication. DNA polymerases, Replication fork, replisome. Mechanism of DNA polymerase III in detail. Ligase. Eukaryotic DNA polymerases. Termination of replication. Extrachromosomal replicons. Replication of DNA strand with 5' end,linear end, replication of adenovirus and \$29 DNAs, rolling circle in replication of phage genomes, F plasmid,. Replication of ColE1 DNA. Replication of mtDNA, D loop. Replication of telomeres
- **Prokaryotic transcription:** Transcription bubble, Stages of transcription, Bacterial RNA polymerase structure and mechanism, recognition of promoters and DNA melting, abortive initiation. Elongation, Termination, antitermination. Phage T7 RNA polymerase, alternative sigma factors transcription of heat shock genes, phage SPO1 genes, sporulation in *Bacillus*. Stringent response in *E.coli*.

15 Hrs

 UNIT 2 Transcription Eukaryotic Transcription: Eukaryotic RNA polymerases - RNA polymerase I, II, III. Mechanism of RNA polymerase in detail. Promoters, Transcription factors, basal apparatus, promoter clearance, elongation. Enhancers, silencers, termination. RNA splicing and Processing: mRNA capping, pre-mRNA splicing, lariat, snRNPs, spliceosome, autocatalytic splicing, alternative splicing, polyadenylation, tRNA splicing and maturation, production of rRNA, Catalytic RNAs - auto splicing, ribozymes, rinonuclease P,viroids and virusoids, RNA editing 	15 Hrs
UNIT 3 Translation Genetic code, tRNA structure, charging of tRNA, differences between initiator tRNA and elongator tRNA, ribosome structure. Accuracy of translation. Stages of translation. Role of IFs in initiation of bacterial translation, Formation of initiation complex. Initiation of eukaryotic translation - Scanning model of mRNA, IRES, Role of eIFs. Elongation of polypeptide - EF-Tu, EF-G, peptide bond formation, peptidyl transferase activity, translocation, eEFs. Termination. Regulation of translation. Post translational modifications of proteins. Protein maturation and secretion - protein splicing,molecular chaperones. Protein translocation and secretion in bacteria	15 Hrs
UNIT 4 Regulation of gene Expression Control of gene expression in prokaryotes Regulatory mechanisms in bacteria. Positive and negative transcriptional control in bacteria. Operon concept, polycistronic mRNA. <i>lac</i> operon - negative inducible, allolactose,mutants of <i>lac</i> operon structure of <i>lac</i> repressor, mechanism of binding of repressor to operator. Catabolite repression of <i>lac</i> operon.Regulation by lac repressor and CAP. <i>trp</i> operon regulation - repressor control & attenuator control. Arabinose operon - positive and negative transcriptional control by AraC. Riboswitch control of <i>rib</i> operon of <i>Bacillus subtilis</i> . Control of translation by riboswitches and small RNAs. Global regulatory mechanisms - <i>mal</i> regulon, two-component signal transduction systems.Regulation of lytic & lysogenic life cycle in bacteriophage λ . Control of lytic cycle by regulatory proteins - <i>cro</i> gene, <i>N</i> gene, lambda repressor - structure, DNA binding mechanism. Events in switch from lytic to lysogenic cycle. Maintenance of lysogeny.	15 Hrs

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

Course Outcomes (COs) / Program Outcomes (POs)	1	2	3	4	5	6	7	8	9	10	11	12
Understand concepts involved in replication, transcription, translation, regulation of gene expression in bacteria and eukaryotes		\checkmark			\checkmark							\checkmark
Differentiate the process of replication, transcription, translation, regulation of gene expression in bacteria and eukaryotes		\checkmark	\checkmark		\checkmark							\checkmark
Understand the genetic switch in bacteriophages												\checkmark
Compare and contrast housekeeping, constitutive, inducible and repressible genes		\checkmark										\checkmark
Outline regulatorymechanisms in bacteria to control cellular processes												\checkmark

Formative Assessment for Theory							
Assessment Occasion/ type	Marks						
Attendance	10						
Seminar	10						
Debate/Quiz/Assignment	10						
Class test	10						
Total	40 Marks						
Formative Assessment as per guideline	es are compulsory						

Course Title	MOLECULAR BIOLOGY (Practical) Pract			Practical Credits	02				
Course Code	MIC C	10-P		Contact Hours	4 Hours/ week				
Formative Asse	Formative Assessment 25 Marks Summative As			ative Assessment	25 Marks				
Practical Content									
 Study of semi Extraction of Determination Determination Extraction an Extraction an Besurement β-galactosida DNA extraction 	i-conserv crude DI n of purit n of DNA d visualiz d visualiz of β-gala se Activition from	0 0	gh microg phenol/chl al cultures acterial cu	oroform method.	epresentations				
 RNA extraction and visualization from yeast. Analysis of RNA quality and integrity Determining nucleotide composition of RNA 									
 Restriction enzyme digestion of DNA molecule - DNA fingerprinting Resolution and visualization of proteins by Polyacrylamide Gel Electrophoresis (SDS-PAGE) 									

Pedagogy: Experiential learning, Problem solving, Project

Formative Assessment for Practical							
Assessment Occasion/ type	Marks						
Class Records	05						
Test	10						
Attendance	05						
Performance	05						
Total	25 Marks						
Formative Assessment as per guidelines	are compulsory						

Refe	erences
1	<i>Karp's Cell and Molecular Biology</i> by Gerald Karp, Janet Iwasa, Wallace Marshall. Ninth Edition. 2020
2	Lewin's Genes XII. Jocelyn E Krebs, Elliott S Goldstein, Stephen T Kilpatrick. Jones and Bartlett Learning.2017
3	James D. Watson, Tania A. Baker, Stephen P. Bell, Alexander Gann, Michael Levine, Richard Losick. Molecular Biology of the Gene, 7th edition. 2017
4	Freifelder's Essentials of MOLECULAR BIOLOGY. George M Malacinski, 4th ed. 2015
5	Freifelder D (2012). Molecular Biology, 5th edition. Narosa Publishing House, India
6	Berg JM, Tymoczko JL, Gatto GJ and Stryer L (2015) Biochemistry, 8th Edition, WH Freeman & Co., New York
7	Alberts Bruce, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2014) Molecular Biology of the Cell. 5th Edition, Taylor and Francis. New York, USA.
8	Tropp BE (2012) Molecular Biology: Genes to Proteins. 4rd Edition, Jones & Bartlett, Learning, Burlington, MA
9	Allison A. Elizabeth (2012) Fundamental Molecular Biology, 2nd Edition. J Willey and Sons, Hoboken, New Jersey
10	Aranda PS, LaJoie DM, Jorcyk C L (2012). Bleach Gel: A Simple Agarose Gel for Analyzing RNA Quality. Electrophoresis. 33(2): 366–369. Doi: 10.1002/elps .201100335.
11	Bloch KD; Grossmann B (1995). Digestion of DNA with Restriction Endonucleases. https://doi.org/10.1002/0471142727.mb0301s31
12	Chomczynski P, Sacchi N (2006). "The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on". Nat Protoc. 1 (2): 581–5. doi:10.1038/nprot.2006.83.
13	Elkins K M (2013). DNA Extraction Forensic DNA Biology.
14	Frederick M. Ausubel, Roger Brent, Robert E. Kingston, David D. Moore, J.G. Seidman, John A. Smith, Kevin Struhl (2003). Current Protocols in Molecular Biology. John Wiley & Sons, New York, United States.
15	Johnson M (2019). RNA extraction, Synatom Research, Princeton, New Jersey, United States. DOI//dx.doi.org/10.13070/mm.en.2.201.
16	Lewis M. Agarose gel electrophoresis (basic method). Department of Pathology, University of Liverpool. <u>http://diyhpl.us/~bryan/irc/protocol-online/protocolcache/agarogel.html</u>
17	Randall DR. (2009). Molecular Biology Laboratory manual.
18	Sambrook JF, Russell DW (2001). Molecular Cloning: a Laboratory Manual. 3rd edition. Cold Spring Harbor, N.Y. Cold Spring Harbor Laboratory Press
19	Struhl K, Seidman J G, Moore D D, Kingston RE, Brent R, Ausubel FM, Smith JA. (2002). hort Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology. John Wiley & Sons Inc., New York, United States
20	Surzycki S (2000). Basic techniques in molecular biology. Springer.
21	Yılmaz M, Ozic C, Gok İ (2012). Principles of Nucleic Acid Separation by Agarose Gel Electrophoresis. Gel Electrophoresis - Principles and Basics, Dr. Magdeldin S (Ed.), ISBN: 978- 953-51-0458-2, InTech. http://www.intechopen. com/books/gel-electr ophoresis-principles- Andbasics

Program Name	B.Sc. in MIC	ROBIOLOGY		Semester V				
Course Title	MICROBIA	MICROBIAL GENETICS (Theory)						
Course Code:	MIC C11-T			No. of Credits	03			
Contact hours	45 Hours(3 Hours per week)			Duration of SEA/Exam	2 hours			
Formative Assessment Marks 40		Summative Assessment Marks 60						

Course Pre-requisite(s) :

Course Outcomes (COs) : After the successful completion of the course, the student will be able to:

CO1 Understand the fundamental molecular principles of genetics

CO2 Understand relationship between phenotype and genotype in genetic traits; CO3 Knowledge on the basis of genetic mapping in bacteria, linkage analysis in fungi.

COS Knowledge on the basis of genetic mapping in bacteria, mikage analysis in tungi.	
Contents	
Mendel's principles of inheritance: Special features of pea plants as an ideal system to study	15 Hrs
genetics and Mendel's cross breeding experimental approach to prove genetic principles.	
Principles of dominance and Segregation; phenotype, genotype, traits controlled by genes,	
existence of alleles (dominant and recessive), segregation of alleles during the formation of	
gametes, aggregation of alleles during fertilization, monohybrid (single character) cross, F1 and	
F2 generation, heterozygous, homozygous, test cross to test genotype of F1 plants. Principle of	
independent assortment; Dihybrid (two characters) cross, pattern of assortment of alleles.	
Chromosomal basis of inheritance; chromosome number, haploid (n), diploid (2n).	
Chromosomal theory of Heredity; Experimental evidence linking the inheritance of genes to	
chromosomes, Chromosomes as arrays of genes, Chromosomal basis of Mendel's principles of	
segregation and independent assortment.	
Historical developments of DNA as a genetic material; Griffith experiment of	15 Hrs
Transformation, Proof that genetic information stored in DNA, Enzymatic approach to prove	
DNA mediates transformation by A very, MacLeod and McCarty, Hershey and Chase	
experiment to prove DNA carries the genetic information in T2 bacteriophage. RNA stores the	
genetic information in some viruses, viroids and prions. Structure of Watson Crick model of	
DNA, Plasmid DNA. Mechanism of DNA replication, enzymes involved in replication.	
Organization of genes in viruses, prokaryotes and eukaryotes, mitochondria and chloroplast.	
Genetics of Viruses	15 Hrs
Structure and life cycle of Bacteriophage T4 and Lambda, lytic and lysogenic cycle of	
bacteriophage. Genetics of Bacteria; Structure and life cycle of bacteria E. coli Mutant genes in	
bacteria, mutants blocked in their ability to utilize specific energy sources, mutants unable to	
synthesize an essential metabolite, mutants resistant to antibiotics. Mechanism of genetic	
exchange in bacteria, Bacterial Transformation: Types of transformation mechanisms found in	
prokaryotes, Natural and artificial methods of transformation. Bacterial Conjugation: U-tube	
experiment to prove physical contact between bacteria is essential for gene transfer, properties of	
the F plasmid, $F^+ x F^-$ conjugation, sexduction F'x F ⁻ conjugation, Hfr x F ⁻ conjugation, Gene	
mapping in bacteria by conjugation. Transduction: Generalized and specialized transduction,	
plasmids and episomes. Genetics of Fungi: life cycle of Yeast and Neurospora, Terad analysis,	
unordered tetrad analysis in yeast, ordered tetrad analysis in Neurospora, two point and three point	
test cross, detecting linkage and mapping genes in yeast and neurospora.	

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

Course Outcomes (COs) / Program Outcomes (POs)												
Course Outcomes (COS) / Hogram Outcomes (FOS)	1	2	3	4	5	6	7	8	9	10	11	12
Understand the fundamental molecular principles of genetics		\checkmark										
Understand relationship between phenotype and genotype in genetic traits;		\checkmark					\checkmark				\checkmark	
Knowledge on the basis of genetic mapping in bacteria, linkage analysis in fungi.		\checkmark										\checkmark

Formative Assessment for Theory								
Assessment Occasion/ type	Marks							
Attendance	10							
Seminar	10							
Debate/Quiz/Assignment	10							
Class test	10							
Total	40 Marks							
Formative Assessment as per guidelines	s are compulsory							

Course Title		MOLE	CULAR GENETICS (Practical Credits	02						
Cou	rse Code	MIC C	12-P		Contact Hours	4 Hours/ week					
Formative Assessment 25 Marks Summative Ass						25 Marks					
			Prac	tical Content							
	Practicals - List of experiments										
1	Isolation of	f bacteria	/fungal DNA								
2	Isolation of	f Colipha	ages from sewage								
3	Bacterial s	urvival a	gainst UV-radiation								
4	Isolation of	f antibiot	ic resistant mutant by gr	adient plate m	nethod						
5			cterization of petite muta								
6	Induction of	of mutati	on in yeast and bacteria	by chemicals /	' radiation						
7	Replica pla	U	1								
8	Bacterial p										
9	Restriction digestion of DNA										
10	Ligation										
11	Bacterial transformation										
12	Bacterial c	onjugatio	on								

MICROBIAL GENETICS

Course Objectives:

The objectives of this course are to introduce students to:

- Basics of genetics and classical genetics covering prokaryotic and eukaryotic domains.
- Classical concepts of Mendelian genetics, recombination in bacteria and fungi.

Student Learning Outcomes:

At the end of the course, students should be able to:

- Describe fundamental molecular principles of genetics;
- Understand relationship between phenotype and genotype in human genetic traits;
- Evaluate the basics of genetic mapping in bacteria, linkage analysis in fungi.

Pedagogy: Experiential learning, Problem solving, Project

Formative Assessment for Practical								
Assessment Occasion/ type	Marks							
Class Records	05							
Test	10							
Attendance	05							
Performance	05							
Total	25 Marks							
Formative Assessment as per guidelines are compulsory								

REFERENCES:

- 1. Microbial Genetics by Maloy ET. Al. 1994. Jones and Bartlett Publishers.
- 2. Molecular Genetics of Bacteria by J. W. Dale. 1994. John Wiley and Sons.
- 3. Modern Microbial Genetics. 1991 by Streips and Yasbin. Niley Ltd.
- 4. Moleculat Biology of the Gene 4th Edition by J.D. Watson, N.H. Hoppkins, J.W.

Roberts, J.A. Steitz and A.M. Weiner. 1987, The Benjamin / Cummings Publications Co. Inc. California.

- 5. Gene VII by Lewin Oxford University Press. 2000.
- 6. Bacterial and Bacteriophage Genetics. 4th Editions by Birge.
- 7. Microbial Genetics by Frefielder. 4th Edition.
- 8. Organization of Prokayotic Genome. 1999 by Robert L.Charlebois, ASM Publications.
- 10. Molecular Genetics of Bacteria, 1997 by Larry, Snyder and Wendy, Champness, ASM

Model curriculum for VI semester

Government of Karnataka Model Curriculum

Program Name	BSc in Micro	biology	Semester	VI
Course Title	IMMUNOLO	OGY AND MEDICA	AL MICROBIOLOGY (Theory)	
Course Code:	MIC C15-T		No. of Credits	4
Contact hours	60 Hours(4 hours per week)		Duration of SEA/Exam	2 hours
Formative Assessment Marks		40	Summative Assessment Marks	60

Course Pre-requisite(s): Common to the Course Programme at Entry Level

Course Outcomes (COs): After the successful completion of the course, the student will be able to:

CO1: To gain a preliminary understanding about various immune mechanisms.

CO2: To familiarize with Immunological techniques and serodiagnosis of infectious diseases

CO3: To understand pathogenic bacterial infections, symptoms, diagnosis and treatment process.

CO4: To understand pathogenic bacterial infections, symptoms, diagnosis and To understand pathogenic bacterial

infections, symptoms, diagnosis and treatment process treatment process

Contents	60 Hrs
UNIT-I	
Normal microflora of the human body and host pathogen interaction	15 hrs.
Normal microflora of the human body: Importance of normal microflora, normal	
microflora of skin, throat, gastrointestinal tract, urogenital tract Host pathogen interaction:	
Definitions - Infection, Invasion, Pathogen, Pathogenicity, Virulence, Toxigenicity, Carriers and	
their types, Opportunistic infections, Nosocomial infections. Transmissionof infection,	
Pathophysiologic effects of LPS. Sample collection, transport and diagnosis.	
Clinical Microbiology	
Medical Bacteriology	
The following diseases in detailwith Symptoms, mode of transmission, prophylaxis and control	
respiratory diseases: Streptococcus pyogenes, Haemophilus influenzae, Mycobacterium tuberculosis	
Gastrointestinal Diseases: Escherichia coli, Salmonella typhi, Vibrio cholerae, Others:	
Staphylococcus aureus, Bacillus anthracis, Clostridium tetani,(10 hrs)	
UNIT-II	15 Hrs
Medical Virology, parasitology and Mycology	
The following diseases in detail with Symptoms, mode of transmission, prophylaxis and control	
Polio, Herpes, Hepatitis, Rabies, Dengue, AIDS, Corona, Influenza, swine flu, Ebola, Chikungunya,	
Japanese Encephalitis	
Protozoan diseases: Malaria, Kala-azar, Entamoeba	
Fungal infections- Cutaneous mycoses: Tinea, pedis (Athlete's foot) Systemic mycoses:	
Histoplasmosis Opportunistic mycoses: Candidiasis(10 Hrs)	
Antimicrobial agents: General characteristics and mode of action Antibacterial agents: Inhibitor of	
nucleic acid synthesis; Inhibitor of cell wall synthesis; Inhibitor of cell membrane function;	
Inhibitor of protein synthesis; Inhibitor of metabolism	
Antifungal agents: Mechanism of action of Amphotericin B, Griseofulvin Antiviral agents:	
Mechanism of action of Amantadine, Acyclovir, Azidothymidine . Antibiotic resistance, MDR,	
XDR, MRSA, NDM-1 5hrs	

UNIT-III	15 Hrs
Historical perspective of immunology; Edward Jenner, Luis Pasteur, attenuation. Immunity; Natural (active and passive) and artificial (active and passive) with example, Innate and acquired, Humoral and cell mediated. Early theories to explain the formation and specificity of antibody; Selective, instructional and clonal selection. Cells and organs of immune system: Hematopoiesis, cytokines, properties and functions of B and T Lymphocytes, Natural killer (NK) cells, Granulocytes (Neutrophils, Eosinophils and Basophils), Monocytes and macrophages, Dendritic cells and Mast cells. Primary lymphoid organs; Bone marrow and Thymus. Secondary lymphoid organs; Spleen and Lymphnodes.	
UNIT-IV	15 Hrs
Antigen: Immunogenicity and antigenicity, epitopes, haptens. Properties of antigen contribute to immunogenicity; Chemical nature (proteins, carbohydrates, lipids and nucleic acids), degree of foreignness, molecular weight, chemical composition and complexity, degradability. Adjuvants (alum, freunds incomplete and complete) and their importance. B and T cell epitopes. Antibody: Basic structure of antibody, light and heavy chain, variable and constant region,hinge region, Fab and Fc. Structure and functions of different types of antibodies (IgM, IgG, IgA, IgE, and IgD). Antibody mediated effector functions; opsonization, complement activation and antibody dependent cell mediated cytotoxicity (ADCC). Antigenic determinants on immunoglobulins: Isotype, allotype and idiotype. Monoclonal antibody production by hybridoma technology 10hrs Principles and applications of antigen-antibody interactions: Definition of affinity and avidity. Immunoprecipitation; Radial (Mancini) and double (Ouchterlony) immunodiffusion. Agglutination reactions: Hemagglutination, Bacterial agglutination, passive agglutination, and agglutination inhibition. Enzyme linked immune-sorbent assay (ELISA): Direct, indirect, sandwich and competitive ELISA. Radioimmunoassay (RIA). Immunofluorescence. Complement system: Functions of complement fixation test. Hypersensitive reactions: Classification, Humoral Immunity mediated hypersensitivity; Type I (IgE), Type II (IgG and IgM-ADCC), Type III (Antigen-antibody complex), and Cell mediated hypersensitivity Type IV (DTH).	

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-15)

Course Outcomes (COs) / Program Outcomes (POs)		Program Outcomes (POs)													
		2	3	4	5	6	7	8	9	10	1	12	13	14	15
To gain a preliminary understanding about various immune mechanisms.	\checkmark														
To familiarize with Immunological techniques and serodiagnosis of infectious diseases			\checkmark							\checkmark					
To understand pathogenic bacterial infections, symptoms, diagnosis and treatment process	\checkmark									\checkmark					
To understand pathogenic bacterial infections, symptoms, diagnosis and To understand pathogenic bacterial infections, symptoms, diagnosis and treatment process treatment process	\checkmark				\checkmark	\checkmark				\checkmark					

Formative Assessment for Theory								
Assessment Occasion/ type	Marks							
Attendance	10 Marks							
Class Test	10 Marks							
Debate/Quiz/Assignment	10 Marks							
Seminar	10 Marks							
Total	40 Marks							
Formative Assessment as per guideling	nes are compulsory							

		NOLOGY AND MEI DBIOLOGY <mark>(Practica</mark>	Practical Credits	2							
Cou	rse Code	MIC C1	.6-P			Contact Hours	4Hours/week				
For	mative Assessi	ment	25 Marks		Summative As	sessment	25 Marks				
			Р	Practical Con	tent						
1	1 Identify pathogenic bacteria (any three of <i>E. coli, Salmonella, Pseudomonas, Staphylococcu Bacillus</i>) on the basis of cultural, morphological and biochemical characteristics: IMViC, TSI, nitratereduction, urease production and catalase tests										
2	2 Study of composition and use of important differential media for identification of pathogenicbacteria: EMB Agar, McConkey agar, Mannitol salt agar, Deoxycholate citrate agar, TCBS										
3	Study of bac	terial flor	a of skin by swab me	thod							
4	Perform anti	bacterial s	sensitivity by Kirby-H	Bauer method							
5			e diseases with the hel rts, AIDS (candidiasi								
6			s of Malarial parasite								
7	Identification	of huma	n blood groups.								
8	Perform Tota	al Leukoc	yte Count of the give	n blood sampl	e.						
9	Perform Dif	ferential	Leukocyte Count of	f the given blo	od sample.						
10	Separate seru	Im from t	he blood sample (den	nonstration).							
11	Perform imm	nunodiffus	sion by Ouchterlony 1	method.							
12	Perform DO	Γ ELISA.									
13	Perform im	munoelec	trophoresis.								

Pedagogy: Experiential learning, Problem solving, Project

Formative Assessment for Practical							
Assessment Occasion/ type	Marks						
Attendance	05 Marks						
Records	05 Marks						
Performance	05 Marks						
Test	10 Marks						
Total	25 Marks						
Formative Assessment as per guidelines are compulsory							

Formative Assessment as per guidelines are compulsory

REFERENCES

1	Ananthanarayan R and Paniker C.K.J (2009) Textbook of Microbiology, 8th Edition, University Press,
	Publication.
2	Brooks G.F., Carroll K.C., Butel J.S., Morse S.A. and Mietzner, T.A. (2013) Jawetz, Melnick and
	Adelberg's Medical Microbiology. 26th edition. McGraw Hill Publication
3	Goering R., Dockrell H., Zuckerman M. and Wakelin D. (2007) Mims' Medical Microbiology. 4th edition. Elsevier
4	Willey JM, Sherwood LM, and Woolverton CJ. (2013) Prescott, Harley and Klein's Microbiology.9th
	edition. McGraw Hill Higher Education
5	Madigan MT, Martinko JM, Dunlap PV and Clark DP. (2014). Brock Biology of Microorganisms.14th
	edition. Pearson International Edition
6	Abbas AK, Lichtman AH, Pillai S. (2007). Cellular and Molecular Immunology. 6th editionSaunders Publication,
	Philadelphia.
7	Delves P, Martin S, Burton D, Roitt IM. (2006). Roitt's Essential Immunology.11th edition Wiley-Blackwell Scientific
	Publication, Oxford.
8	Goldsby RA, Kindt TJ, Osborne BA. (2007). Kuby's Immunology. 6th edition W.H. Freeman and
	Company, New York.
9	Murphy K, Travers.P, Walport M. (2008). Janeway's Immunobiology. 7th edition Garland Science, Publishers, New York.
10	Peakman.M.and Vergani D. (2009).Basic and Clinical Immunology,2nd edition Churchill,Livingstone Publishers,
	Edinberg.
11	Richard C and Geiffrey S. (2009). Immunology. 6th edition. Wiley Blackwell Publication.

Program Name	BSc in Micro	biology		Semester	VI				
Course Title	MICROBIAI	MICROBIAL GENETIC ENGINEERING (Theory)							
Course Code:	MIC C17-T			No. of Credits	3				
Contact hours	45 Hours(3 Hours per week)			Duration of SEA/Exam	2 hours				
Formative Assessment Marks 40		40	Sum	mative Assessment Marks	60				

Course Pre-requisite(s): Common to the Course Programme at Entry Level

CO1 : To acquire knowledge on the concepts and terminology in genetic engineering

CO2 : To learn about principles involved in manipulating genes and DNA

CO3: Familiar with various cloning strategies in prokaryotes

CO4 : Learn techniques in genetic engineering

CO5 : To have awareness of IPR, the social and the ethical issues concerning cloning by genetic engineering

MICROBIAL GENETIC ENGINEERING	45Hrs
Unit 1: Introduction to Microbial Genetic Engineering	15 Hrs
Historical prospectives: Definition of genetic engineering, milestones in genetic engineering, prospects and p	roblems of
genetic engineering.	
Tools in Microbial Genetic Engineering: Restriction modification systems- Types, Mode of action, non	nenclature,
applications of restriction enzymes in genetic engineering. DNA modifying enzymes and their applica	
polymerases, methylases, Terminal deoxynucleotidyl transferase, kinases and phosphatases and DNA liga	ises.
Unit 2: Cloning vectors, DNA transfer methods and identification of recombinants	15 Hrs
Cloning Vectors: Definition and Properties. Characteristics of cloning vectors. Plasmid vectors: pBR and p	oUC series.
Bacteriophage lambda, cosmids, BACs, YACs. Use of linkers and adaptors. Expression vectors: Baculov	virus based
vectors, mammalian SV40-based expression vectors.	
Cloning host - Cloning in <i>Escherichia coli</i> , cloning in <i>Saccharomyces cerevisiae</i> , cloning in GRAS microorganism Library: Construction of cDNA library, genomic library. DNA transfer methods: Microinjection, Biolistic, Electroporation, Calcium phosphate and Liposome mediated DNA transfer. Identification and selection of recombinants: DNA hybridisation, blue white selection, antibiotic selection, colony and plaque hybridization	
Unit 3: Techniques and applications in Microbial Genetic Engineering	15 Hrs
Isolation and Detection of DNA: Isolation of DNA, restriction digestion and ligation of DNA, Agarose gel elect	rophoresis,
Blotting techniques- Southern blotting, Northern blotting, dot blot, DNA microarray analysis, Western blo	otting. DNA
sequencing- Sanger's method. PCR techniques and applications.	
Recombinant microorganisms: Application of recombinant microorganisms in basic research, industry,	medicine,
agriculture, environment.	
Products of recombinant DNA technology: Products of human therapeutic interest - insulin, hGH, antisense n	nolecules.
Bt transgenic - cotton, brinjal, Gene therapy, recombinant vaccines. Biological, ethical and social issues of	fgene
cloning and IPR.	

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

Course Outcomes (COs) / Program Outcomes	Program Outcomes (POs)														
POs)		2	3	4	5	6	7	8	9	10	11	12	13	14	15
To acquire knowledge on the concepts and terminology in genetic engineering	\checkmark														
To learn about principles involved in manipulating genes and DNA	\checkmark		\checkmark						\checkmark						
Familiar with various cloning strategies in prokaryotes									\checkmark	\checkmark					
Learn techniques in genetic engineering												\checkmark			
To have awareness of IPR, the social and the ethical issues concerning cloning by genetic engineering															

Formative Assessment for Theory				
Assessment Occasion/ type	Marks			
Attendance	10			
Seminar	10			
Debate/Quiz/Assignment	10			
Class test	10			
Total	40 Marks			
Formative Assessment as per guidelines are compulsory				

Course Title	MICROBIAL GENETIC ENGINEERING (Practical) Pract				tical Credits	02	
Course Code	MIC C18	18-P		Contact Hours		4 Hours/ week	
Formative Assessment 25 Marks		Summative Assessment		25 Marks			
Practical Content							

Practical: Microbial Genetic Engineering

Preparation of buffers-TE, TAE and Lysis buffer. Isolation of plasmid DNA from *Escherichia coli*. Estimation of DNA by DPA method. Demonstration of estimation of DNA by spectrophotometric method. Resolution and visualization of DNA by agarose gel electrophoresis. Induction of mutations in bacteria by UV light. Preparation of competent cells and demonstration of bacterial transformation. Demonstration of bacterial transformation and calculation of transformation efficiency. Digestion of DNA with restriction enzymes. Demonstration of ligation of DNA fragments. Preparation of master and replica plates. Designing of primers for DNA amplification. Demonstration of amplification of DNA by PCR. Demonstration of Southern blotting. Study of recombinant products-as per theory syllabus.

Pedagogy: Experiential learning, Problem solving, Project

Formative Assessment for Practical				
Assessment Occasion/ type	Marks			
Class Records	05			
Test	10			
Attendance	05			
Performance	05			
Total	25 Marks			
Formative Assessment as per guidelines are compulsory				

REFERENCES :

1	Brown TA. (2010). Gene Cloning and DNA Analysis. 6th edition. Blackwell Publishing, Oxford, U.K.
	Clark DP and Pazdernik NJ. (2009). Biotechnology: Applying the Genetic Revolution. Elsevier
	Academic Press, USA
2	Krebs J, Goldstein E, Kilpatrick S (2013). Lewin's Essential Genes, 3rd Ed., Jones and Bartlett
	Learning Primrose SB and Twyman RM. (2006). Principles of Gene Manipulation and Genomics, 7th
	edition. Blackwell Publishing, Oxford, U.K.
3	Primrose SB and Twyman RM. (2008). Genomics: Applications in human biology. Blackwell
	Publishing, Oxford, U.K.
4	Russell PJ. (2009). i Genetics- A Molecular Approach. 3rd Ed, Benjamin Cummings
5	Sambrook J and Russell D. (2001). Molecular Cloning-A Laboratory Manual. 3rd edition. Cold Spring
	Harbor Laboratory Press
6	Sambrook J and Russell DW. (2001). Molecular Cloning: A Laboratory Manual. 4th Edition, Cold Spring Harbour
	Laboratory press.
7	Watson JD, Baker TA, Bell SP et al. (2008) Molecular Biology of the Gene, 6th Ed., Benjamin Cummings Wiley
	JM, Sherwood LM and Woolverton CJ. (2008). Prescott, Harley and Klein's Microbiology. McGraw Hill Higher
	Education.